首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
The microstructure, optical, photoluminescence and electrical properties of ZnO based films deposited onto FTO glass substrates by ultrasonic spray pyrolysis have been investigated. For comparison and a better understanding of physical properties of indium- and aluminum-doped ZnO and undoped ZnO thin films, X-ray diffraction analysis, photoluminescence spectra, optical, SEM texture and electrical conductivity analyses were performed. The AZO and IZO films exhibit the nanofiber structure with diameters 260 and 400 nm. X-ray diffraction showed all samples to be polycrystalline with hexagonal ZnO. The optical band gaps of the films were varied by Al and In dopants. The photoluminescence spectra of the films show a weak broad in the visible range and shifted to green emission for indium doping and to the green blue emission for aluminum as dopant. The width of the PL spectra for aluminum-doped films is too large compared to those of the indium-doped ones. The electrical conductivity of the ZnO film changes with Al and In dopants. The position of donor levels changes with In and Al dopants and approaches the conduction band level with the metal dopants. The obtained results suggest that the metal doping has a clear effect upon the growth, optical, photoluminescence and electrical conductivity properties of the ZnO films.  相似文献   

2.
采用Sol-Gel工艺在玻璃基片上制备出C轴择优取向性、高可见光透过率以及高电导率的Al3+离子掺杂的ZnO透明导电薄膜ZnO:Al(ZAO薄膜).并研究了退火温度、Al掺杂量等对其光电性能的影响.结果表明,溶胶-凝胶法制备ZAO薄膜的最佳工艺条件为:溶胶浓度0.75 mol/L、掺杂量1.5 atm%,镀膜层数10层(厚度约为136 nm)、退火温度600℃.  相似文献   

3.
Thin films of ZnO were grown by the sol–gel method using spin-coating technique on (0001) sapphire substrates. The effect of doping under Ar/H2 atmosphere on the structural and electrical properties of ZnO was investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), I–V characterization, Hall effect and micro-photoluminescence. The films that were annealed at 600 °C in Ar/H2 (95/5) % atmosphere showed (002) a predominant orientation. The crystalline nature of 2 mol.  % of Li doped films were better when compared to 1 mol.  % of Li doped films. The incorporation of Li in ZnO lattice was confirmed by X-ray photoelectron spectroscopy, and micro-photoluminescence. Hall effect measurements and I–V characterization of the Li doped ZnO thin films exhibited a better p-type behavior.  相似文献   

4.
Among the various semiconducting metal oxide materials, ZnO thin films are highly attractive in the development of materials area. In this paper, Al-doped ZnO thin films were prepared by sol–gel dipping and drawing technology and their composition, structure and optical–electrical properties were investigated. XRD results shows that the Al-doped ZnO thin film is of polycrystalline hexagonal wurtzite structure, and the (002) face of the thin film has the strongest orientation at the annealing temperature of 550 °C. The surface resistance of Al-doped ZnO thin film firstly drops and then increases with the increase in annealing temperature. Al doping concentration is also an important factor for improving the conductivity of modified ZnO thin films, and the surface resistance has the tendency to drop at first and then to increase when the Al concentration is increasing. The surface resistance of modified ZnO thin films drops to the lowest point of 139 KΩ sq?1 when the Al concentration is 1.6 at% and the annealing temperature is 500 °C. The light transmission measurements show that the doping concentration has little influence on light transmittance. The transmittance at the visible region of films is all over 80 %, and the highest value is up to 91 %.  相似文献   

5.
Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.  相似文献   

6.
用基于密度泛函理论的第一性原理平面波超软赝势方法,对本征ZnO,Ga、F单掺ZnO和Ga-F共掺ZnO的几何结构进行优化后计算了各体系的相关性质.结果表明各掺杂体系有各自的优缺点,在制作透明导电薄膜时可根据具体要求采取不同的掺杂方案.Ga掺杂ZnO比F掺杂ZnO的晶格畸变小.相同环境下Ga原子比F原子更容易进入ZnO晶格,因此掺杂后结构更加稳定.Ga、F掺杂都改善了ZnO的导电性,掺杂ZnO的载流子浓度比本征ZnO增加了3个数量级,相同浓度的F掺杂比Ga掺杂能产生更多的载流子.Ga-F共掺杂ZnO折中了上述Ga、F单掺杂ZnO的优缺点.另外,掺杂后ZnO的吸收边蓝移,以Ga-F共掺杂ZnO在紫外区域的透射率最大,在280~380 nm范围内其透射率在90%以上.  相似文献   

7.
Homogeneous transparent conducting Sn:ZnO films on fused silica substrates were prepared by dip-coating from nanoparticle dispersions, while the nanocrystalline Sn:ZnO particles with different dopant concentrations were synthesized by microwave-assisted non-aqueous sol–gel process using Sn(IV) tert-butoxide and Zn(II) acetate as precursors and benzyl alcohol as solvent. The dopant concentration had a great impact on the electrical properties of the films. A minimum resistivity of 20.3 Ω cm was obtained for a porous Sn:ZnO film with initial Sn concentration of 7.5 mol% after annealing in air and post-annealing in N2 at 600 °C. The resistivity of this porous film could further be reduced to 2.6 and 0.6 Ω cm after densified in Sn:ZnO and Al:ZnO reaction solution, respectively. The average optical transmittance of a 400-nm-thick Sn:ZnO film densified with Sn:ZnO after the two annealing steps was 91%.  相似文献   

8.
1 at.% Al-doped Zn1−x Cd x O (x = 0–8 at.%) thin films were prepared on glass substrates by sol–gel method. The codoping films retained the hexagonal wurtzite structure of ZnO, and showed preferential c-axis orientation. The effect of annealing ambient (in vacuum and nitrogen) on the optical and electrical properties of (Cd,Al)-codoped ZnO films were investigated using transmission spectra and electrical measurements. The transmittances of the codoping films were obviously degraded by vacuum annealing to 50–60 %, but enhanced to 70–80 % after nitrogen annealing. The carrier concentration and Hall mobility both increased, and resistivity decreased with narrowing band gap of Al-doped Zn1−x Cd x O, below different critical concentrations x = 4 % (in vacuum) and x = 6 % (in nitrogen). It is revealed that the conductivity is also improved by Cd doping along with band gap modification. The variations in optical and electrical properties are ascribed to both the changes of the crystallinity and concentration of oxygen vacancies under different ambient. In view of transmittance and conductivity, nitrogen annealing might be a more effective post-annealing way than vacuum annealing for our (Cd,Al)-codoped ZnO films to meet the requirements of transparent conducting oxide (TCO).  相似文献   

9.
High-quality c-axis oriented Al and Er co-doped ZnO films were prepared on the quartz glasses by sol?Cgel method. In order to obtain the optimal processing parameters for the growth of the oriented film, an L16 (45) orthogonal experimental design was chosen. The experimental results show the rank of 5-factors as follows: Er at.%?>?the number of coating layer?>?annealing temperature?>?Al at.%?>?the concentration of the sol. The Al and Er co-doped film prepared using the optimal parameters exhibits the preferential orientation along the c-axis perpendicular to the substrate surface. In addition, the structural, morphological and optical properties of the films were studied by X-ray diffraction, scanning electron microscopy, and UV?Cvisible spectrophotometer, respectively. The photoluminescence spectra were also used to characterize the luminescence properties of the samples. It is found that when ZnO was co-doped with 7?% Al and 1.5?% Er, the blue emission centered at 465?nm disappears and the green emission centered at 547?nm increases with a blue shift, resulted from the rapid reducing of the interstitial Zn defect, and increasing of the oxygen defects and vacancies caused by Al3+ and Er3+ dopants.  相似文献   

10.
Thin films of ZnO were grown by the sol–gel method using spin-coating technique on (0001) sapphire substrates. The effect of doping after annealing on the structural and optical properties has been investigated by means of X-ray diffraction (XRD), cathodoluminescence (CL) spectrum, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films that were dried at 623 K and then post annealed at 873 K showed (0002) as the predominant orientation. Two emission bands have been observed from CL spectrum. Lithium doped film shows shift in the near band edge UltraViolet emission peak and suppressed defect level emission peak in the visible range. SEM analysis of the films exhibits many spherical shaped nanoparticles. Roughness of the films determined using atomic force microscopy.   相似文献   

11.
In this work, conductive atomic force microscopy is used to study the inhomogeneous surface electrical conductivity of Al‐doped ZnO thin films at a nanoscale dimension. To this end, Al‐doped ZnO films were deposited onto the soda lime glass substrates at substrate temperature (Ts) varying from 303 to 673 K in radio frequency magnetron sputtering. The obtained local surface electrical conductivity values are found to be influenced by their bulk electrical resistivity, surface topography and tip geometry. Further, the average (local) surface conductivity from the film surface is found to increase with increasing Ts from 303 to 623 K, beyond which they decrease until 673 K. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Dilute magnetic semiconductors are fast emerging spintronic materials where advantage of magnetic properties of semiconductor materials (usually doped with small quantities of magnetic ions) is being explored. Sol–gel technique, being low-cost simple and application oriented method, has been used in the present case. ZnO films of <150 nm thickness have been deposited by spin coating onto single crystal p-type Si substrates. The optimized sol is of paramagnetic nature, whereas, mixed para- dia-magnetic phase is observed for the as-prepared films. A complete ferromagnetic phase transition has been observed after heating the films in vacuum at a temperature of 300 °C. These sol–gel prepared films exhibit hexagonal wurtzite structure as observed by X-ray diffraction. After the magnetic field annealing in vacuum the films showed strengthened magnetic as well as structural properties. This work presents a clear evidence of ferromagnetic behavior of the un-doped ZnO films deposited by sol–gel at room temperature. It is also pointed out that Zn vacancies rather than oxygen deficiency are responsible for ferromagnetism in these sol–gel deposited ZnO thin films, whereas, the experimental evidence has been substantiated with the theoretical calculations using density functional theory.  相似文献   

13.
Influence of post-annealing temperature on properties of ZnO:Li thin films   总被引:4,自引:0,他引:4  
Li-doped ZnO thin films were prepared on glass substrates by DC reactive magnetron sputtering. The influence of post-annealing temperature on the electrical, structural, and optical properties of the films was investigated. A conversion from p-type conduction to n-type in a range of temperature was confirmed by Hall measurement. The optimal p-type conduction is achieved at the annealing temperature of 500 °C with a resistivity of 57 Ω cm, carrier concentration of 1.07 × 1017 cm−3 and Hall mobility of 1.03 cm2 V−1 s−1. From the temperature-dependent PL analysis, the energy level of LiZn acceptor was determined to be 140 meV above the valence band.  相似文献   

14.
ZnO homojunction light emitting device (LED) with n-ZnO:Ga/p-ZnO:N structure was fabricated on sapphire substrate by metal organic chemical vapor deposition. The reproducible p-type ZnO:N layer with hole concentration of 1.29 × 1017 cm−3 was formed with NH3 as N doping source followed by thermal annealing in N2O plasma protective ambient. The device exhibited desirable rectifying behavior. Distinct electroluminescence emission centered at 3.2 eV and 2.4 eV were detected from this device under forward bias at room temperature. The intensive ultraviolet emission was comparable to the visible emission in the electroluminescence spectrum, which represent remarkable progress in the performance of ZnO homojunction LED.  相似文献   

15.
Ion implantation techniques were used to study the effect of an MgO additive on the luminescence properties induced by Cu in ZnO thin films. Cu ions (accelerating voltage of 75 keV, dose of 4.5 × 1014 ions/cm2) were implanted at room temperature in nondoped and Mg‐doped ZnO thin films. After annealing, emissions in the visible region originating from Cu phosphor were observed at 510 nm in CVD‐ZnO and at 450 nm in Mg‐doped ZnO (MZO) thin films. The Cu depth profile shows distortion in the low‐concentration region of CVD‐ZnO. After the annealing, the Cu implant was homogenized in thin films, and then the Cu concentration was determined to be 1.5 × 1019 ions/cm3 in CVD‐ZnO and 5.6 × 1018 ions/cm3 in MZO thin films. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Films of undoped ZnO and zinc oxide doped with gallium and indium (ZnO(Ga) and ZnO(In)) have been prepared by the spin-coating method with the subsequent annealing at 500°C. Phase composition, microstructure, conductivity, and optical properties of the films have been investigated depending on the content of gallium and indium in them.  相似文献   

17.
采用金属有机化学气相沉积法制备了ZnO和ZnO∶Ni薄膜,并对它们的结构、光学和电学特性进行了对比研究.通过扫描电子显微镜( SEM)和X射线衍射(XRD)对薄膜的表面形貌和晶体结构进行了分析,结果表明,Ni元素的掺杂虽然降低了薄膜的晶体质量,但并未改变ZnO的纤锌矿结构.通过紫外-可见分光光度计对薄膜的光学特性进行了...  相似文献   

18.
ZnO thin films doped with Ce at different concentration were deposited on glass substrates by spray pyrolysis technique. XRD analysis revealed the phase purity and polycrystalline nature of the films with hexagonal wurtzite geometry and the composition analysis confirmed the incorporation of Ce in the ZnO lattice in the case of doped films. Crystalline quality and optical transmittance diminished while electrical conductivity enhanced with Ce doping. Ce doping resulted in a red-shift of optical energy gap due to the downshift of the conduction band minimum after merging with Ce related impurity bands formed below the conduction band in the forbidden gap. In the room temperature photoluminescence spectra, UV emission intensity of the doped films decreased while the intensity of the visible emission band increased drastically implying the degradation in crystallinity as well as the incorporation of defect levels capable of luminescence downshifting. Ce doping showed improvement in photocatalytic efficiency by effectively trapping the free carriers and then transferring for dye degradation. Thus Ce doped ZnO thin films are capable of acting as luminescent downshifters as well as efficient photocatalysts.  相似文献   

19.
Al-doped n-ZnO/p-Si heterojunctions were fabricated using a sol–gel dip coating technique at 700 °C, in a nitrogen ambient. The structural, optical, and electrical properties of ZnO:Al thin films, and the heterojunction properties of ZnO:Al/p-Si were investigated with respect to the effects of Al doping concentration. Hexagonal nano-structured ZnO: Al thin films with a 1.2% and a 1.6 at.% Al concentration exhibited high optical transmittance in visible ranges. Electrical resistivity changed with respect to Al doping concentration, and minimum resistivity was detected at a 1.2 at.% Al concentration. The ZnO:Al/p-Si heterojunction properties were analysed using current–voltage (I–V) measurements at four different Al concentrations, ranging from 0.8 to 1.6 (at.%). The ZnO:Al/p-Si heterojunctions exhibited diode-like rectifying behaviour. Under UV illumination, the photoelectric behaviour observed for the ZnO:Al/p-Si heterojunctions was diode.  相似文献   

20.
等离子体增强MOCVD法生长ZnO薄膜   总被引:3,自引:0,他引:3  
利用等离子体增强MOCVD法生长出 ZnO薄膜,用X射线衍射谱观察到位于 2θ34.56°处(0002)的衍射峰,表明ZnO沿c方向呈柱状生长.通过荧光光谱,观察到来自于激子的高强度的近带边紫外光发射(375um).紫外发射光强度与深能级复合发射光强度比高达 193,显示出材料的高质量,并通过原子力显微镜加以验证.为了实现高阻ZnO薄膜,利用高温富氧分段退火和用N2 气进行掺氮两种方法生长高阻ZnO薄膜.结果表明,电阻率由0.65 Ω·cm分别升高到1100 Ω·cm(分段退火)和5×104Ω·cm(掺氮).进一步比较发现,掺氮的样品不仅电阻率高,而且光荧光特性好,显示出更高的薄膜质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号