首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have concurrently studied the surface pressure (pi) versus area (A) isotherms and microscopic surface morphological features of Langmuir monolayers of diethylene glycol mono-n-octadecyl ether (C18E2) by film balance and Brewster angle microscopy (BAM) over a wide range of temperature. At temperatures < or =10 degrees C, the monolayers exist in the form of condensed phase even just after the evaporation of the spreading solvent, suggesting that the melting point of the condensed phase is above this temperature. At > or =15 degrees C, the monolayers can exist as gas (G), liquid expanded (LE), and liquid condensed (LC) phases and undergo a pressure-induced first-order phase transition between LE and LC phases showing a sharp cusp point followed by a plateau region in the pi-A isotherms. A variety of 2-D structures, depending on the subphase temperature, are observed by BAM just after the appearance of the cusp point. It is interesting to note here that the domains attain increasingly large and compact shape as the subphase temperature increases and finally give faceted structures with sharp edges and corners at > or =30 degrees C. The BAM observations were coupled with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to gain better understanding regarding the conformational order and subcell packing of the molecules. The constancy of the methylene stretching modes over the studied temperature range suggests that the hydrocarbon chains do not undergo any conformational changes upon compression of the monolayer. However, the full width at half-maximum (fwhm) values of the asymmetric methylene stretching mode (nu(as)(CH(2))) are found to respond differently with changes in temperature. It is concluded that even though the trans/gauche ratio of the hydrocarbon chains remains virtually constant, the LE-LC phase transition upon compression of the monolayer is accompanied by a loss of the rotational freedom of the molecules.  相似文献   

2.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

3.
The surface phase behavior of di-n-dodecyl hydrogen phosphate (DDP) in Langmuir monolayer and its interactions with L-arginine (L-arg) have been investigated by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM). The DDP monolayers on pure water show a first-order liquid expanded-liquid condensed (LE-LC) phase transition and form fingering LC domains having uniform brightness at different temperatures. At 15 degrees C, the pi-A isotherms on pure water and on different concentration solutions of L-arg show a limiting molecular area at approximately 0.50 nm(2)/molecule. With increasing the subphase concentration of L-arg up to 4.0 x 10(-4)M, the LE and the LE-LC coexistence regions shift to larger molecular areas and higher surface pressures, respectively. With a further increase in the concentration of L-arg beyond this critical concentration, these isotherms show little or no more expansion. These results have been explained by considering the fact that the L-arg undergoes complexation with the DDP to form L-arg-DDP that remains in equilibrium with the components at the air-water interface. As the concentration of L-arg in the subphase increases, the equilibrium shifts towards the complex. At a concentration of L-arg > or =4.0 x 10(-4)M, the DDP monolayers get saturated and show the characteristics of the new amphiphile, L-arg-DDP. BAM is applied to confirm the above results. When the concentration of the L-arg is <4.0 x 10(-4)M, domains always start forming at an area of approximately 0.64 nm(2)/molecule, which is the critical molecular area for the phase transition in the DDP monolayers on pure water. In contrast, when the monolayers are formed on a solution containing > or =4.0 x 10(-4)M L-arg, comparatively smaller size domains are formed after the appearance of a new cusp point at approximately 0.55 nm(2)/molecule. With an increase in the concentration of L-arg in the subphase, the size of the domains decreases indicating that the fraction of the DDP gradually decreases, whereas the fraction of the complex gradually increases. In addition, a very simple procedure for determination of the stability constant, which is 2.6 x 10(4)M(-1) at 15 degrees C, has been suggested.  相似文献   

4.
We study the surface phase behavior in Langmuir monolayers of 1-O-hexadecyl-rac-glycerol (C16G) by film balance and Brewster angle microscopy over a wide range of temperatures. A cusp point followed by a pronounced plateau region in the pressure-area (pi-A) isotherm indicates a first-order phase transition between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase at the air-water interface. A wide variety of condensed domains are found to form just after the appearance of the cusp point. The observed surface morphology was compared with that of ethylene glycol mono-n-hexadecyl ether (C16E1) that bears an ethylene oxide (EO) unit in the head-group. As usually observed, the domains of C16E1 are found to be circular at lower temperatures and fractal at higher temperatures. Contrary to this usual behavior, the domains of C16G are found to be strip-like structures at lower temperatures, which attain increasingly compact shape as the temperature increases and finally attain faceted structures at > or = 25 degrees C. It is concluded that a higher degree of dehydration around the head-group region of C16G appreciably reduces the hydration-induced repulsive interactions between the head-groups and imparts to the molecules an increase in hydrophobicity, thereby a closer molecular packing. As a result, the molecules form increasingly compact domains as the temperature increases. Since the head-group of C16E1 is much smaller than that of C16G, dehydration effect cannot appreciably increase its hydrophobic character. Rather, increases in subphase temperature result in a decrease in the line tension of the interface giving fractal structures at higher temperatures. In addition, the changes in enthalpy (deltaH) and entropy (deltaS) values were also calculated to understand the thermodynamic nature of condensation of the molecules in the LE-LC transition region.  相似文献   

5.
We present the adsorption kinetics and the surface phase behavior of water-soluble n-tetradecyl phosphate (n-TDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). The relaxation of the surface pressure at about zero value in the surface pressure (pi)-time (t) adsorption isotherm is found to occur from 2 to 20 degrees C with appropriate concentrations of the amphiphile. These plateaus are accompanied by two surface phases, confirming that the relaxation of the surface pressure is caused by a first-order phase transition. Only this phase transition is observed at <6.5 degrees C and it is considered as a gas (G)-liquid condensed (LC) phase transition. Above 6.5 degrees C, the phase transition at zero surface pressure is followed by another phase transition, which is indicated by the presence of cusp points in the pi-t curves at different temperatures. Each of the cusp points is followed by a plateau, which is accompanied by two surface phases, indicating that the latter transitions are also first-order in nature. At >6.5 degrees C, the former transition is classified as a first-order G-liquid expanded (LE) phase transition, while the latter transition is grouped into a first-order LE-LC phase transition. The critical surface pressure (pi(c)) necessary for the G-LC and G-LE phase transitions is zero and remains constant all over the studied temperatures, whereas that for the LE-LC transition increases linearly with increasing temperature. Based on these results, we construct a rather elaborated phase diagram that shows that the triple point for Gibbs monolayers of n-TDP is 6.5 degrees C. All the results are consistent with the present understanding of the Langmuir monolayers of insoluble amphiphiles at the air-water interface.  相似文献   

6.
The adsorption and micellar behavior of diethylene glycol mono-n-tetradecyl ether (C14E2), sodium 3,6,9,12-tetraoxaoctacosanoate (TOOCNa), and their mixture at a 1:1 molar ratio have been studied by film balance, Brewster angle microscopy (BAM), and surface tensiometry at different temperatures. The monolayers of pure C14E2 and its mixture with TOOCNa show a first-order phase transition with a conspicuous cusp point in their respective adsorption isotherms. This is further confirmed by the observation of bright two-dimensional condensed phase domains visualized by BAM just after the appearance of the phase transition. It is interesting to note here that for C14E2, condensed domains are observed up to 19 degrees C, while in the mixed system, they are observed up to 22 degrees C. To understand why in the mixed system the domains are observed at higher temperatures than for pure C14E2, we have measured the temperature dependency of the equilibrium surface tension at > or = cmc (gammacmc) values of both the pure and the mixed systems. The gammacmc values of pure C14E2 remain almost constant, while those of pure TOOCNa and its mixture with C14E2 decrease appreciably with increasing temperature. It is concluded that higher degree of dehydration of the ethylene oxide (EO) chain reduces the head-group size of TOOCNa, which outweighs the combined effect of the repulsive interactions between the head-groups and the thermal motion of the adsorbed molecules. Furthermore, C14E2 being inserted into the TOOCNa monolayer reduces the electrostatic repulsions between the charged heads, and consequently, the adsorbed monolayers attain closer molecular packing. As a result, the gammacmc values of both pure TOOCNa and its mixture with C14E2 decrease with increasing temperature. This facilitates the formation of condensed domains in the mixed system at higher temperatures, whereas none of the individual members can show any indicative feature of phase transition under the same experimental conditions.  相似文献   

7.
We studied interfacial properties of a series of methyl and ethyl esters of enantioenriched syn-2,3-dihydroxy fatty acids with different chain lengths at the air-water interface, using a Langmuir type film balance and a Brewster angle microscope (BAM). After analyzing their surface pressure (Pi)-area (A) isotherms, we inferred that these molecules existed as an E conformation in the liquid-expanded (LE) phase of monolayers, and the E conformation of molecules changed into a Z conformation during the LE-LC transition in a monolayer. BAM images evidenced the formation of elongated LC aggregates. This is possibly induced by the intermolecular hydrogen bonds, leading to the anisotropic growth of LC domains, on the basis of the FT-IR spectroscopy data. The enthalpy change of the LE-LC phase transition is considered to result from the three types of intermolecular interactions at the air-water interface during compression of these amphiphiles. These findings are discussed in terms of various physical factors that influenced intermolecular interactions and macroscopic aggregations of these amphiphiles.  相似文献   

8.
We present the adsorption kinetics and surface morphology of the adsorbed monolayers of bis(ethylene glycol) mono-n-tetradecyl ether (C14E2) by film balance and Brewster angle microscopy. A cusp point followed by a plateau region in the pressure (pi)-time (t) adsorption isotherm indicates a first-order phase transition in the coexistence region between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase. A variety of condensed phase domains surrounded by the homogeneous LE phase are observed just after the appearance of the phase transition. The domains are of a spiral or striplike structure at lower temperatures. This characteristic shape of the domains is because of strong dipole-dipole repulsion between the molecules. At 18 degrees C, the domains are found to be quadrant structures. A slight increase in subphase temperature (around 1 degrees C) brings about a quadrant-to-circular shape transition in the domains. The circular domains return to quadrant structures as the subphase temperature is lowered. The domains completely disappear when the temperature is increased beyond 19 degrees C, suggesting that the critical temperature for the condensed domain formation is 19 degrees C. Above this temperature, the hypothetical surface pressure necessary for the phase transition exceeds the actual surface pressure attainable from a solution of concentration greater than or equal to the critical micelle concentration. An increase in molecular motion with increasing temperature results in a higher degree of chain flexibility. As a result, the molecules cannot accumulate in the condensed phase form when the subphase temperature is above 19 degrees C.  相似文献   

9.
The surface phase behavior in Langmuir monolayers of some oxyethylenated nonionic surfactants of the general formula C16En, with n = 1, 2, 3, and 4, at the air-water interface has been studied by film balance and Brewster angle microscopy (BAM) over a wide range of temperatures. The C16E4 monolayers cannot show any indicative features of phase transition because of strong dipolar as well as hydration-induced repulsive interactions between the bulky headgroups. On the other hand, the monolayers of C16E1, C16E2, and C16E3 show a sharp cusp point followed by a pronounced plateau region in their respective isotherms with subsequent formation of a variety of structures in the two-phase coexistence region between the liquid expanded (LE) and liquid condensed (LC) phases at different temperatures. As usually observed, the domains of C16E1, which bears only one ethylene oxide (EO) unit in the headgroup, are circular at lower temperatures while fractal at higher temperatures. On the other hand, those for C16E2 and C16E3 are initially found to be irregular structures, which attain increasingly compact shape with increasing temperature, and finally become circular when the subphase temperature is 26 and 15 degrees C for C16E2 and C16E3, respectively. It is concluded that a higher degree of dehydration around the headgroup region appreciably reduces the headgroup size, which imparts to the molecules an increase in hydrophobicity, thereby a closer molecular packing. Consequently, the line tension of the interface increases, showing compact structures at higher temperatures. Since C16E1 bears only one EO unit in its headgroup, the dehydration effect cannot appreciably raise its hydrophobicity to overcome the increases in thermal motion and chain flexibility of the molecules. Rather, increases in subphase temperature result in a decrease in the line tension of the interface, giving fractal structures at higher temperatures.  相似文献   

10.
Four different phases and four different first-order phase transitions have been shown to exist in Gibbs adsorption layers of mixtures containing n-hexadecyl dihydrogen phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2. These conclusions have been made from surface pressure-time (pi-t) adsorption isotherms measured with a film balance and from monolayer morphology observed with a Brewster angle microscopy (BAM). The observed four phases are gas (G), liquid expanded (LE), liquid condensed (LC) and LC' phases. Three first-order phase transitions are G-LE, LE-LC and LC-LC'. However, the thermodynamically allowed G-LC phase transition in a 1.2 x 10(-4) M mixture at 2 degrees C, which is below the so-called triple point, is kinetically separated into the G-LE and LE-LC phase transitions. The most interesting observation is that the homogeneous LC phase shows a new first-order phase transition named as LC-LC' at 2 or 5 degrees C. The LE and LC phases represent circular and fractal shaped domains, respectively, whereas the LC' phase shows very bright, anisotropic and characteristic shaped domains.  相似文献   

11.
We present the adsorption kinetics and the surface phase behavior of n-hexadecyl dihydrogen phosphate (n-HDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). A phase diagram, which shows a triple point at about 25.8 degrees C, is constructed by measuring the surface pressure (pi)-time (t) adsorption isotherms. Below 25.8 degrees C, each of the pi-t curves shows a plateau at about zero surface pressure indicating the existence of a first-order phase transition. The BAM observation confirms the order of this phase transition by presenting two-surface phases during this plateau. However, the BAM observation also shows clearly another second-order phase transition from an isotropic phase to a mosaic-textured liquid condensed (LC) phase. The initial phase is a gas (G) phase. Considering the peculiarity of the middle phase, we suggest this phase as an intermediate (I) phase. Above the triple point, the pi-t curves predict the existence of two-step first-order phase transitions. Similar to the results at lower temperatures, the BAM images show two-surface phases during these first-order phase transitions together with a second-order phase transition from an isotropic phase to an LC phase. These transitions are classified as a first-order G-LE (liquid expanded) phase transition, which is followed by another first-order LE-I phase transition. The second-order phase transition is an I-LC phase transition. Contrary to these results, at 36 degrees C both the pi-t measurements and the BAM observation present only two first-order phase transitions, which are G-LE at zero surface pressure and LE-LC transition at higher surface pressure. The shape of the domains during the main transitions shows a peculiar change from a circular at 20 degrees C to an elongated at 24 degrees C and finally to a circular shape at 36 degrees C. Such a change in the domain shapes has been explained considering the dehydration effect at higher temperatures as well as the nature of phases.  相似文献   

12.
The temperature-dependent surface phase behavior of two sparingly soluble surfactants, namely, ethylene glycol n-dodecyl ether (EGDE) and ethylene glycol n-tetradecyl ether (EGTE), at the air-water interface was investigated by film balance and Brewster angle microscopy (BAM). A cusp point followed by a pronounced plateau region in the surface pressure-time (pi-t) adsorption isotherms of the amphiphiles measured by film balance indicates the first-order phase transition. Bright two-dimensional condensed phase domains in a dark background are observed by BAM just after the phase transition. In both cases the critical surface pressure necessary for the phase transition increases with increasing temperature. The domains are found to be circular up to 5 and 27 degrees C for EGDE and EGTE, respectively, above which they show a fingering pattern. Condensed domains are observed up to 23 and 37 degrees C for EGDE and EGTE, respectively. The surface properties of the amphiphiles are found to be markedly affected by their tendency to aggregate in the bulk as micelles. The CMC values of both the amphiphiles show a maximum at a definite temperature, T(max), that corresponds well to their respective maximum temperatures of domain formation. An increase in temperature beyond T(max) results in an increasing trend for the formation of micelles. Consequently the system suffers from a shortage of two-dimensional surface concentration of the molecules to attain the surface pressure necessary for phase transition. With increasing temperature, the enthalpy, DeltaH(m) degrees , and entropy, DeltaS(m) degrees , of micellization change from negative to positive in both cases. An enthalpy-entropy compensation effect is found to hold for both the amphiphiles over the entire temperature range. The thermodynamic quantities reveal that the increase in temperature is favorable for micellization when the temperature exceeds the corresponding T(max) of the amphiphiles.  相似文献   

13.
The characteristic features of hydroxystearic acid monolayers OH-substituted in the mid position of the alkyl chain deviate considerably from those of the usual nonsubstituted stearic acid. The phase behavior, domain morphology, and two-dimensional lattice structure of 9-, 11-, and 12-hydroxystearic acids are studied, using pi-A isotherms, Brewster angle microscopy (BAM), and grazing incidence X-ray diffraction (GIXD), to obtain detailed information on the effect of the exact position of the OH-substitution. The pi-A isotherms of all three hydroxyoctadecanoic acids have an extended flat plateau region, the extension of which only slightly decreases with the increase of temperature. At the same temperature, the extension of the plateau region increases and the plateau pressure decreases from 9-hydroxyoctadecanoic acid to 12-hydroxyoctadecanoic acid. The absolute -DeltaH and -DeltaS values for the phase transition increase slightly from 9-hydroxyoctadecanoic acid to 12- hydroxyoctadecanoic acid and indicate differences in the ordering of the condensed phase under consideration of the special reorientation mechanism of these bipolar amphiphiles at the fluid/condensed phase transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region is specific for the position of the OH-substitution of the alkyl chain, just as the lattice structures of the condensed monolayer phase. 11-hydroxyoctadecanoic acid monolayers form centered rectangular lattices with the chain tilt toward the NNN (next nearest neighbor) direction, and 12-hydroxyoctadecanoic acid monolayers have an oblique lattice over the entire pressure range. A special feature of 9-hydroxystearic acid monolayers is the phase transition between two condensed phases observed in the pi-A isotherm of 5 degrees C at approximately 18 mN/m, where the centered rectangular lattice shows a NNN/NN transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region, just as the lattice structures of the condensed monolayer phase, reveal the high specifity of the monolayer feature of the bipolar hydroxystearic acids OH-substituted in the mid position.  相似文献   

14.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

15.
Thermodynamic and morphological properties of Langmuir monolayers of di-n-dodecyl hydrogen phosphate (DDP) have been studied by film balance and Brewster angle microscopy (BAM) over a wide range of temperature between 5 and 40 degrees C. From pi-A isotherms, a generalized phase diagram consisting of gas (G), liquid expanded (LE) and liquid condensed (LC) phases is constructed for the DDP monolayers. The BAM images show the formation of gas bubble in the bright background of LE phase during G-LE phase transitions and fingering LC domains during LE-LC phase transitions. The shapes of these domains are independent of temperature, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of the LC domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. In addition, the domains do not show any change in their shapes with decreasing the compression rate. Since the two-alkyl chains are directly attached by covalent bonds to the phosphate group, the rearrangement of the molecules needs to move the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes the fingering domains, which are independent of external variables. Although the domains are formed in a fingering shape, the equilibrium shape can be attained by about 120 min at 15 degrees C indicating a rather slow relaxation rate.  相似文献   

16.
We have determined the structure formed at the air-water interface by semifluorinated alkanes (C(8)F(17)C(m)H(2m+1) diblocks, F8Hm for short) for different lengths of the molecule (m = 14, 16, 18, 20) by using surface pressure versus area per molecule isotherms, Brewster angle microscopy (BAM), and grazing incidence x-ray experiments (GISAXS and GIXD). The behavior of the monolayers of diblocks under compression is mainly characterized by a phase transition from a low-density phase to a condensed phase. The nonzero surface pressure phase is crystalline and exhibits two hexagonal lattices at two different scales: a long-range-order lattice of a few tens of nanometers lateral parameter and a molecular array of about 0.6 nm parameter. The extent of this organization is sufficiently large to impact larger scale behavior. Analysis of the various compressibilities evidences the presence of non organized molecules in the monolayer for all 2D pressures. At room temperature, the self-assembled structure appears generic for all the F8Hm investigated.  相似文献   

17.
In this work the interaction between human serum albumin (HSA) and a monofluorinated phospholipid, 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine] (F-DPPC), was studied by using Langmuir monolayer and Brewster angle microscopy (BAM) techniques. Different amounts of F-DPPC were spread on a previously formed HSA monolayer located at the air/water interface at 25 °C and the mixed monolayers thus obtained showed the existence of a liquid expanded-liquid condensed (LE-LC) phase transition (at 14 mN/m), attributed to the pure F-DPPC monolayer, coexisting with a second transition (at 22-24 mN/m) corresponding to the protein conformational change from an unfolded state to another in “loops” configuration. Relative thickness measurements recorded during the compression of the mixed monolayers showed the existence of an “exclusion” surface pressure (πexc), above which the protein is squeezed out the interface, but not totally. BAM images reveal that some protein molecules in a packed “loops” configuration remain at the interface at surface pressures higher than the “exclusion” surface pressure. The application of the Defay-Crisp phase rule to the phase diagram of the F-DPPC/HSA system can explain the existence of certain regions of surface pressure in which the mixed monolayer components are miscible, as well as those others that they are immiscible.  相似文献   

18.
The phase behavior of 2,3-disubstituted methyl octadecanoate monolayers at the air-water interface is studied by film balance and a Brewster angle microscope (BAM). The comparison of the surface pressure-molecular area (pi-A) isotherms with the corresponding BAM images provides information on the phase behavior of the monolayers. Variations in the phase behavior of different 2,3-disubstituted methyl octadecanoate monolayers can be correlated with the size of the headgroups, the interactions between the polar molecular moieties and the subphase, and the intermolecular interactions. The enlarging of the headgroups makes forming a condensed monolayer difficult for the molecules, even after introduction of substituents giving rise to the formation of hydrogen bonds between the molecules, which may balance the steric repulsion and stabilize the monolayers. Model calculations of the two-dimensional lattice structure of the 2,3-disubstituted methyl octadecanoates on basis of the pg and p1 space group are performed and correspond well with the experimental results.  相似文献   

19.
Surface phase behavior of n-hexadecyl phosphate (n-HDP) and its mixture with L-arginine (L-arg), which behaves as L-argininium cation (L-arg(+)) in aqueous solution, at a molar ratio 2:3 in Gibbs adsorption layers has been studied by film balance, Brewster angle microscopy (BAM) and surface tensiometry at 20 degrees C. The monolayers of n-HDP show three phases that are gas (G), intermediate (I) and liquid condensed (LC), and two phase transitions. A first-order G-I phase transition that is followed by a second-order I-LC phase transition is found in these monolayers. Although the monolayers of the mixtures containing n-HDP and L-arg show three phases, the nature of the middle phase is different from that of the n-HDP monolayers. The three phases observed for the mixed systems are G, liquid expanded (LE) and LC phases. A first-order G-LE phase transition is found at a low surface pressure at > or =10 degrees C. This transition is followed by another first-order LE-LC phase transition at a certain higher surface pressure. The first-order nature of the phase transitions for both the systems is confirmed by the presence of plateaus in the pi-t curves, which are accompanied by two surface phases. A second-order phase transition in the monolayers of n-HDP is indicated by a gradual change in the surface morphology, from a uniformly bright isotropic to an anisotropic mosaic textured phase, which is accompanied by a continuous change in the surface pressure. The domains formed during the first-order phase transition in the adsorption layers of n-HDP are circular and remain unaffected by changing the temperature. Although the domains of an LE phase are circular, those of an LC phase at the latter transition are fractal in the mixed system. A further branching of the arms of the fractal domains is found to occur by an increase in the temperature. All the results are explained by considering salt formation between anion from n-HDP and L-arg(+).  相似文献   

20.
The novel perfluorinated double long-chain salts with divalent counterions of separate electric charge, 1,1-(1,omega-alkanediyl)-bispyridinium perfluorotetradecane- carboxylate [CnBP(FC14)2 : n = 2, 6, 10, 14], were newly synthesized and their interfacial behavior was investigated by Langmuir monolayer methods. Surface properties [surface pressure (pi)-, surface potential (DeltaV)-, dipole moment (micro perpendicular)-area (A) isotherms] and morphological images of CnBP(FC14)2 monolayers on a subphase of water and on various NaCl concentrations were measured by employing the Wilhelmy method, the ionizing electrode method, fluorescence microscopy (FM), and Brewster angle microscopy (BAM). CnBP(FC14)2 formed a stable monolayer on water at 298.2 K, where these pi-A isotherms shifted to a larger molecular area with increasing charge separation and had no transition point from a disordered phase to an ordered one. On the contrary, the pi-A isotherms on NaCl solutions moved to the smaller areas, showed the transition and higher collapse pressures compared to the pi-A isotherms on water. These results suggested that a sodium chloride subphase induced the condensation of CnBP(FC14)2 molecules upon compression. In addition, it is quite noticeable that a dissociation of CnBP counterion from CnBP(FC14)2 occurs on NaCl solutions, depending on the extent of charge separation. This phenomenon was supported by the changes of the limiting area, transition pressure, collapse pressure, repeated compression-expansion cycle curve, and DeltaV behavior of perfluorotetradecanoic acid (FC14). Furthermore, temperature dependence of these monolayers was investigated, and an apparent molar quantity change on the phase transition was evaluated on 0.15 M NaCl. The morphological behavior of CnBP(FC14)2 and FC14 monolayers was also confirmed by FM and BAM images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号