首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eu2+- and Eu3+-Zn2GeO4 were prepared by the high temperature solid-state reaction method. The phase purity and crystallinity of Zn2GeO4:Eu samples were characterized by X-ray diffraction (XRD). The excitation spectra, the emission spectra and the luminescence decay curves of the Eu2+- and Eu3+-Zn2GeO4 were investigated. Zn2GeO4:Eu2+ gives a bluish-green luminescence with one emission band located at 467 nm, and Zn2GeO4:Eu3+ presents an reddish-orange color due to the transition (5D07FJ, J = 1 and 2) of the Eu3+ ions. The luminescence decay curves of Eu2+ and Eu3+ provide complementary evidence to the mixed valence of europium (Eu2+, Eu3+) in Zn2GeO4 host. These indicate that the mixed valence of europium (Eu2+, Eu3+) coexists in Zn2GeO4 host prepared in an oxidizing atmosphere. The abnormal reduction phenomenon of Eu3+→Eu2+ in Zn2GeO4 host prepared in an oxidizing atmosphere was reported and discussed on the basis of the charge compensation model.  相似文献   

2.
Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.  相似文献   

3.
The strong dependence of the emission spectrum of YF3:Pr3+ on excitation source (228.8 nm, 213.9 nm or cathode rays) is ascribed to two different types of Pr3+ sites: one with a relatively strong crystal field and the other with a relatively weak crystal field. The presence of the latter is connected with the conversion of one short-wave UV (? 215 nm) photon into two visible photons. Two-photon luminescence of Pr3+ was also found for α-NaYF4 and LaF3, but not for CaF2 and BaF2 due to the too strong crystal field in these lattices. The occurrence of two-photon Pr3+ luminescence is compared with the intensity of the IR-excited green emission of the corresponding Yb3+, Er3+-activated lattices. The intensity of the Pr3+ luminescence at shortwave UV excitation (213.9 nm) is rather weak. Luminescence of reasonable efficiency is, however, observed on excitation with cathode rays.  相似文献   

4.
Mg2SnO4, which has an inverse spinel structure, was adopted as the host material of a new green emitting phosphor. Luminescence properties of the manganese-doped magnesium tin oxide prepared by the solid state reaction were investigated under vacuum ultraviolet (VUV) ray and low-voltage electron excitation. The Mg2SnO4:Mn phosphor exhibited green luminescence with the emission spectrum centered at 500 nm due to spin flip transition of the d-orbital electron associated with the Mn2+ ion. Optimum Mn concentration of Mg2SnO4:Mn under VUV excitation with 147 nm wavelength and electron beam excitation with 800 V excitation voltage are 0.25 and 0.6 mol%, respectively. The emission intensities of Mg2SnO4:Mn phosphors under the two excitation sources are higher than those of Zn2SiO4:Mn and ZnGa2O4:Mn phosphors. At 0.25 mol% of Mn concentration, on the other hand, the decay time is shorter than 10 ms.  相似文献   

5.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated.  相似文献   

6.
The present commercial phosphor Zn2SiO4:Mn2+ requires further improvement because of its long decay time. In this work, the co-doping effects of Ba2+ and Ti4+ upon emission intensity and decay time were investigated. Ba2+ and Ti4+ cations have favorable influences on the photoluminescent properties. When doped with appropriate amount of Ba2+, the intensity of green emission was increased 12% and the decay time was shortened 18%. When doped with appropriate amount of Ti4+, the luminescence intensity was enhanced a little, and the decay time was shortened 14%. Ba2+ and Ti4+ were co-doped in Zn2SiO4:Mn2+ system, the luminescence intensity was enhanced 18%, and the decay time was shortened sharply (about 31%).  相似文献   

7.
Yb3+/Er3+ co-doped Zn2SiO4 ceramics are rapidly synthesized by the microwave radiation method. Green and red up-conversion emissions are observed in Zn2SiO4: Yb3+, Er3+ ceramics under 980 nm excitation. The influence of co-doped Li+ or Bi3+ ion on luminescence intensity for the phosphors has been investigated. At Li+ or Bi3+ doping concentration of 1 mol%, up-converted green emission can be increased by 6 times and 20 times, respectively. It is believed that co-doped Li+ or Bi3+ ion results in the local distortion of Er3+ in Zn2SiO4, increasing the intra-4f transitions of Er3+ ions. The local distortion is proved by spectral probing method with Eu3+.  相似文献   

8.
In order to improve the phosphor efficiency of yellow emission of the phosphor-converted white light emitting diode (pcW-LED), the Ba2+ Mg2+ co-doped Sr2SiO4:Eu phosphors were synthesized and were coated with thin and uniform TiO2. The TiO2 layer with 20 nm was uniformly coated over the phosphor surface. The photoluminescence (PL) properties of the TiO2-coated phosphors showed improved yellow-emission intensity compared to the pristine phosphors. The temperature dependence of photoluminescence was measured from 25 to 150 °C. The TiO2-coated phosphors showed superior thermal quenching property compared to pristine phosphors. We concluded that the TiO2-coated surface of the phosphor is an effective way to improve the phosphor efficiency and enhance the thermal quenching stability.  相似文献   

9.
《Solid State Ionics》2006,177(26-32):2705-2709
Lithium ions of perovskite-type lithium ion conductor La0.55Li0.35TiO3 were replaced by divalent Mg2+, Zn2+, and Mn2+ ions in an ion-exchange reaction using molten chlorides. The polycrystalline Mg-exchanged and Zn-exchanged samples are solid electrolytes for divalent Mg2+ and Zn2+ ions, whose dc ionic conductivities (σ = 2.0 × 10 6 S cm 1 at 558 K for the Mg-exchanged sample, La0.56(2)Li0.02(1)Mg0.16(1)TiO3.01(2) and σ = 1.7 × 10 6 S cm 1 at 708 K for the Zn-exchanged samples, La0.55(1)Li0.0037(2)Zn0.15(1)TiO2.98(2)) were compared to those of the known highest Mg2+ and Zn2+ inorganic solid electrolytes. The Mn-exchanged sample, then, showed paramagnetic behavior in the temperature range of 2 to 300 K. The Mn ions in the exchanged sample are divalent and the spin configuration is in high spin state (S = 5/2).  相似文献   

10.
The emission spectra of Zn1?x Mn x Te/Zn0.6Mg0.4Te and Cd1?x Mn x Te/Cd0.5Mg0.5Te quantum-well structures with different manganese concentrations and quantum-well widths are studied at excitation power densities ranging from 105 to 107 W cm?2. Under strong optical pumping, intracenter luminescence of Mn2+ ions degrades as a result of the interaction of excited managanese ions with high-density excitons. This process is accompanied by a strong broadening of the emission band of quantum-well excitons due to the exciton-exciton interaction and saturation of the exciton ground state. Under pumping at a power density of 105 W cm?2, stimulated emission of quantum-well excitons arises in CdTe/Cd0.5Mg0.5Te. The luminescence kinetics of the quantum-well and barrier excitons is investigated with a high temporal resolution. The effect of the quantum-well width and the managanese concentration on the kinetics and band shape of the Mn2+ intracenter luminescence characterized by the contribution of the manganese interface ions is determined.  相似文献   

11.
The Zn2SiO4:Mn2+ nanophosphors with different particle sizes were synthesized via the hydrothermal method by adjusting the concentrations of surfactant and the hydrothermal temperature. The behavior of the photoluminescence as a function of phosphor particle sizes under vacuum ultraviolet excitation was investigated. Higher critical quenching concentration with decreasing particle size of the Zn2SiO4:Mn2+ nanophosphors was observed. This is ascribed to the hindrance of energy transfer between luminescence centers under vacuum ultraviolet excitation. The prolonged decay time in smaller samples provides further evidence that the energy transfer confinement has an effect on the photoluminescence properties.  相似文献   

12.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

13.
在978nm激光二极管的激发下,Mo掺杂的TiO2材料表现出很强的宽带上转换发光 ,该发光来源于[MoO42-基团的激发态3T1, 3T2能级到基态1A1能级的电子跃迁.通过研究发光强度与抽运功率的关系及上转换发光的上升时间曲线,发现TiO2∶Mo体系的上转换发光中存在着雪崩机制,应用转 关键词: 上转换 光子雪崩 转移函数理论  相似文献   

14.
The fluorescence of Mn2+ ion as impurity in CaCO3 has been investigated. Emission bands from the 4D(Eg), 4D(T2g) and 4G(T1g) levels have been observed. The analysis of excitation and emission spectra has allowed to obtain the values of field strength (Dq) for the excited energy levels of Mn2+ in CaCO3 lattice. The temperature dependence of excitation and emission spectra yield an activation energy for thermal quenching of luminescence very close to theoretical calculation. The behaviour of luminescence lifetime with temperature has also been obtained.  相似文献   

15.
Measurements of the emission and excitation spectra of powdered Mg2TiO4:Mn4+ phosphors reveal that single Mn4+ ions are not responsible for the luminescence — as assumed till now — but so-called N centres. These centres are excited either by direct UV absorption or by radiationless energy transfer from the excited 2E state of the Mn4+ ions to the N centres. The Mn4+ ions absorb the energy corresponding to the transition 4A2g2E which is used for the excitation of the N centres, but do not emit the corresponding lines. The observed different luminescence spectra (sharp lines or broad bands) depend on the annealing conditions and indicate that the N centres consist of Mn4+ ions associated with unknown lattice defects. The annealing process does not only form the tetravalent state of the manganese, but creates above all the N1 centres, which emit sharp lines. Two more lines observed at 697.8 nm and 699.4 nm, called Rm lines, are due to a certain amount of MgTiO3:Mn4+ in the phosphor.  相似文献   

16.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

17.
The thermal characterization and spectroscopic properties of Er3+-doped 0.6GeO2-(0.4-x)PbO-xPbF2 glasses were investigated experimentally. With the replacement of PbO by PbF2 the thermal stability of glasses is improved and the infrared fluorescence intensity at 1530 nm is increased. The Judd-Ofelt intensity parameters, radiative transition rates, and fluorescence lifetimes of the excited 4I13/2 level of Er3+ ions were calculated from Judd-Ofelt theory. The asymmetric ligand field around Er3+ ions resulted from the incorporation of PbF2 into germanate glasses, broadens the infrared emission spectra at 1530 nm. Upconversion luminescence in the investigated glasses was observed at room temperature under the excitation of 976 nm laser diode. The glass 0.6GeO2-0.3PbO-0.1PbF2 exhibits the maximum upconversion emission intensity, while no frequency upconversion luminescence was observed in the 0.6GeO2-0.4PbO glass. The quadratic dependence of the green and red emissions on excitation power indicates that two-photon absorption contributes to the visible emission under the 976-nm excitation.  相似文献   

18.
Highly resolved luminescence and luminescence excitation spectra of recently synthesized LnL3bpy complexes, where Ln=Eu3+, Tb3+, bpy=2,2′- bipyridyne and L=phosphoroazo derivative of β-diketone: CCl3C(O)NP(O)(OCH3)2, in solid state and dissolved in nematic liquid crystal 6CHBT [4-(isothiocyanatophenyl)-1-(trans-4-hexyl)cyclohexane] were measured. The photoluminescence intensity of the complexes dissolved in 6CHBT was found to exhibit a strong dependence on the electric field. The mechanism of the effect and reason of its asymmetry with respect to the sign of electric field are discussed in the paper. Luminescence decay time in various environments and experimental quantum yields of the luminescence of these compounds in CDCl3 and CHCl3 solutions were measured.  相似文献   

19.
The up-conversion luminescence composite NaYF 4:Er 3+ /TiO 2 is prepared using the sol-gel method.The specimen has good crystallinity and two shapes,i.e.,viereck and round,while the sizes of viereck and round particles are both micron-sized.The TiO 2 has an anatase structure,while the NaYF 4 has a hexagonal phase,which can be hardly obtained through the common sol-gel method.Due to the big particle size and the high crystallinity of pure NaYF 4:Er 3+,the composite has a small specific surface area that is less than Degussa P25 TiO 2.The NaYF 4:Er 3+ /TiO 2 composite shows several emission peaks at 211,237,and 251 nm under the excitation of 388 nm,at 395 nm and 411 nm under the excitation of 500 nm,and at 467,481,492,and 508 nm under the excitation of 570 nm.  相似文献   

20.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号