首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
论地震发生机制   总被引:3,自引:0,他引:3       下载免费PDF全文
陆坤权  曹则贤  厚美瑛  姜泽辉  沈容  王强  孙刚  刘寄星 《物理学报》2014,63(21):219101-219101
地震发生的物理机理和过程是还没有认识清楚的问题. 此前人们将浅源地震归因于弹性回跳,根据这一观点和岩石实验结果计算得到的地震能量与实际观测结果有很大矛盾,被称之为“热流佯谬”. 中源和深源地震发生在地幔区域,其成因也没有合理的解释. 考虑到地壳和地幔是离散集合态物质体系及其慢动力学运动行为的基本特点,本文根据物理学原理,特别是近年凝聚态物理发展出来的相关新观念,并依据已有观测事实,从新的视角探究地震发生的物理机制. 1) 关于地壳岩石层中的应力分布:在不考虑构造力时,依据万物皆流的流变学原理,原始地壳岩石在自重压强长时间作用下,纵向和横向应力相同,没有差应力. 大地构造力推动岩块滞滑移动挤压断层泥,施加于其他岩块,逐渐传递和积累. 这种附加的横向构造力与原始岩石中应力叠加,形成地壳岩石层中的实时应力. 由于断层泥属于颗粒物质体系,具有与岩石不同的力学特征,其弹性模量比岩石小得多,且随压强而增大,导致构造作用力随深度非线性增大. 给出了地壳中构造应力分布及其变化规律. 2) 关于地壳岩石层强度:地壳岩石的自重会使岩石发生弹性–塑性转变. 通过对弹性–塑性转变深度的计算,并根据实际情况分析,给出了地壳岩石弹性、部分塑性和完全塑性三个区域的典型深度范围. 在部分塑性区,塑性体比例达到约10%以上时,发生塑性连通,这时岩石剪切强度由塑性特征决定. 塑性滑移的等效摩擦系数比脆性破裂小一个数量级以上,致使塑性滑移时岩石剪切强度比脆性破裂小得多. 同时,随深度增大,有多种因素使得岩石剪切屈服强度减小. 另一方面,地震是大范围岩石破坏,破坏必然沿薄弱路径发生. 因此,浅源地震岩石的实际破坏强度必定比通常观测到的岩石剪切强度值低. 给出了地壳岩石平均强度和实际破坏强度典型值随深度的分布规律. 3) 关于地震发生的条件和机制:地震发生必定产生体积膨胀,只有突破阻挡才可膨胀. 地震发生的条件是:大地构造力超过岩石破坏强度、断层边界摩擦力以及所受阻挡力之和. 因此,浅源地震是岩石突破阻挡发生的塑性滑移. 在此基础上提出了浅源地震发生的四种可能模式. 深源地震是冲破阻挡发生的大范围岩块流. 浅源地震和深源地震都是堵塞–解堵塞转变,是解堵塞后岩石层块滑移或流动造成的能量释放. 4) 关于地震能量和临震前兆信息:地震能量即为堵塞–解堵塞转变过程释放的动能. 以实例估算表明,地震岩石滑移动能与使岩块剪切破坏和克服周围摩擦阻力所需做的功相一致,不会出现热流佯谬. 同时指出,通过观测地震发生前构造力的积累过程、局域地区地质变迁以及岩石状态变化等所产生的效应,均可能获得有价值的地震前兆信息. 关键词: 地震发生机制 热流佯谬 地壳岩石应力和强度 堵塞–解堵塞转变  相似文献   

2.
Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes.  相似文献   

3.
减轻地震灾害的物理学问题   总被引:1,自引:0,他引:1  
吴忠良 《物理》2005,34(3):176-180
减轻地震灾害的研究通常包括地震危险性评估、地震危害预测、地震灾害的减轻三个环节.物理学在减轻地震灾害的研究与应用中具有重要意义.文章从强地面运动与地震的工程灾害、复杂系统与地震的社会灾害、地球应力场的变化与地震预测等三个不同的侧面,介绍了在减轻地震灾害的实际工作中提出的一些重要的物理问题.这些问题既是目前地震学家、工程地震学家和地震工程师普遍关注的基础科学问题,也同时与当代物理学研究的一些前沿领域紧密地联系在一起.  相似文献   

4.
Fracturing processes within solid Earth materials are inherently a complex phenomenon so that the underlying physics that control fracture initiation and evolution still remain elusive. However, universal scaling relations seem to apply to the collective properties of fracturing phenomena. In this article we present a statistical physics approach to fracturing based on the framework of non-extensive statistical physics (NESP). Fracturing phenomena typically present intermittency, multifractality, long-range correlations and extreme fluctuations, properties that motivate the NESP approach. Initially we provide a brief review of the NESP approach to fracturing and earthquakes and then we analyze stress and stress direction time series within Arctic sea ice. We show that such time series present large fluctuations and probability distributions with “fat” tails, which can exactly be described with the q-Gaussian distribution derived in the framework of NESP. Overall, NESP provide a consistent theoretical framework, based on the principle of entropy, for deriving the collective properties of fracturing phenomena and earthquakes.  相似文献   

5.
根据欧亚地震带东段地质构造和地震活动特征,选取中国及邻区地震区域,对1897—2008年发生的824次震级s≥60地震的年度释放能量进行滤波和系统分析.结果显示,地震能量释放特征表现为周期性衰减振荡.通过振荡特征分析和计算,从理论上预测中国及邻区长期和中短期强震活动形势.计算结果表明,所选区域内大陆板块地震活跃时间应持续1537 a,如果从1897年开始,即到2050年结束.这一理论结果与中国两千多年历史地震资料分析结论一致,也为我国的地震活跃期持续150 a左右 关键词: 中国大陆及邻区 年度地震能量 强震活动预测 振荡类比  相似文献   

6.
Nowcasting earthquakes, suggested recently as a method to estimate the state of a fault and hence the seismic risk, is based on the concept of natural time. Here, we generalize nowcasting to a prediction method the merits of which are evaluated by means of the receiver operating characteristics. This new prediction method is applied to a simple (toy) model for the waiting (natural) time of the stronger earthquakes, real seismicity, and the Olami-Feder-Christensen earthquake model with interesting results revealing acceptable to excellent or even outstanding performance.  相似文献   

7.
陆坤权  厚美瑛  姜泽辉  王强  孙刚  刘寄星 《物理学报》2012,61(11):119103-119103
本文以地壳和地幔的基本构造和己有观测事实为依据,运用颗粒物理原理,将地壳和地幔作为大尺度离散态颗粒物质体系处理,重新认识地震孕育过程,前兆产生机制及规律,探求地震预测方法和途径.主要结果是:建立了地壳与地幔构成和运动的颗粒模型;提出了引发地震的大地构造力的形成机制,以及地震前兆信息产生和传播规律;说明了地震前兆信息的主要特征及其与地震发生之间的关联,阐述了探测有效地震前兆信息的方法原理;用颗粒流动的阻塞-解阻塞转变原理解释了深源地震发生机制;对以前难以理解的若干地震学现象进行了解释,并讨论了地震的可预测性。由于地壳和地幔的离散结构特征,对于地震孕育的准静力学过程,连续介质理论不再适用.以颗粒物理原理研究地震成因、地震前兆和地震预测,所获得的新认识与传统连续介质地震学观点有本质区别。  相似文献   

8.
吴晓娲  秦四清  薛雷  杨百存  张珂 《物理学报》2018,67(20):206401-206401
弄清锁固段(岩石)破裂过程中自组织临界性的物理涵义,对正确认识地震可预测性问题等具有重要意义.本文指出锁固段破裂过程存在两个临界点,第一临界点为体积膨胀点,是自组织过程起点,在该点锁固段发生可判识的高能级破裂事件,这可视为锁固段宏观破裂前的惟一可识别前兆;第二临界点为峰值强度点,即失稳点,在该点通常发生有明显地表破裂带的大地震.基于以前研究给出的两者之间应变比理论关系以及地震震级与能量约束关系,可预测锁固段在第一和第二临界点处发生的某些标志性地震,并已得到诸多震例分析的支持.本文研究结果表明:由于锁固段是非均匀介质,失稳前必须出现自组织过程,自组织是“因”,临界失稳是“果”,正是因为自组织过程的存在,才使得对某些大地震(如标志性地震)的预测成为可能;两个临界点之间的破裂演化过程并不是瞬态行为,通常是一个长期过程,该过程中标志性地震的发生遵循确定性规律,并不存在小地震直接导致大地震(如标志性地震)的级联效应.  相似文献   

9.
地震预测与统计物理   总被引:5,自引:0,他引:5  
吴忠良  陈运泰 《物理》2002,31(6):365-371
将现代统计物理学的理论和方法应用于地震和地震预测问题的研究,近年来取得了长足的进展,成为物理学和地震学之间一个最为活跃的交叉领域,这一领域所取得的成果,例如,将地震作为一种临界现象的模型,不仅丰富和深化了对地震的认识,而且改变了地震预测研究中的一些传统观念。文章介绍了这方面的研究进展,讨论了与这一领域相关的一些重要的物理概念和悬而未决的科学问题。  相似文献   

10.
EARTHQUAKE SCALING PARADOX   总被引:5,自引:0,他引:5       下载免费PDF全文
吴忠良 《中国物理》2001,10(5):395-397
Two measures of earthquakes, the seismic moment and the broadband radiated energy, show completely different scaling relations. For shallow earthquakes worldwide from January 1987 to December 1998, the frequency distribution of the seismic moment shows a clear kink between moderate and large earthquakes, as revealed by previous works. But the frequency distribution of the broadband radiated energy shows a single power law, a classical Gutenberg-Richter relation. This inconsistency raises a paradox in the self-organized criticality model of earthquakes.  相似文献   

11.
We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. An- tineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomog- raphy of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for ν<,e> emitted from a reactor. The case for a ν<,e> beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.  相似文献   

12.
‘Every Earthquake a Precursor According to Scale’ (EEPAS) is a catalogue-based model to forecast earthquakes within the coming months, years and decades, depending on magnitude. EEPAS has been shown to perform well in seismically active regions like New Zealand (NZ). It is based on the observation that seismicity increases prior to major earthquakes. This increase follows predictive scaling relations. For larger target earthquakes, the precursor time is longer and precursory seismicity may have occurred prior to the start of the catalogue. Here, we derive a formula for the completeness of precursory earthquake contributions to a target earthquake as a function of its magnitude and lead time, where the lead time is the length of time from the start of the catalogue to its time of occurrence. We develop two new versions of EEPAS and apply them to NZ data. The Fixed Lead time EEPAS (FLEEPAS) model is used to examine the effect of the lead time on forecasting, and the Fixed Lead time Compensated EEPAS (FLCEEPAS) model compensates for incompleteness of precursory earthquake contributions. FLEEPAS reveals a space-time trade-off of precursory seismicity that requires further investigation. Both models improve forecasting performance at short lead times, although the improvement is achieved in different ways.  相似文献   

13.
An Ms7.0 earthquake struck Jiuzhaigou (China) on 8 August 2017. The epicenter was in the eastern margin of the Tibetan Plateau, an area covered by a dense time-varying gravity observation network. Data from seven repeated high-precision hybrid gravity surveys (2014–2017) allowed the microGal-level time-varying gravity signal to be obtained at a resolution better than 75 km using the modified Bayesian gravity adjustment method. The “equivalent source” model inversion method in spherical coordinates was adopted to obtain the near-crust apparent density variations before the earthquake. A major gravity change occurred from the southwest to the northeast of the eastern Tibetan Plateau approximately 2 years before the earthquake, and a substantial gravity gradient zone was consistent with the tectonic trend that gradually appeared within the focal area of the Jiuzhaigou earthquake during 2015–2016. Factors that might cause such regional gravitational changes (e.g., vertical crustal deformation and variations in near-surface water distributions) were studied. The results suggest that gravity effects contributed by these known factors were insufficient to produce gravity changes as big as those observed, which might be related to the process of fluid material redistribution in the crust. Regional change of the gravity field has precursory significance for high-risk earthquake areas and it could be used as a candidate precursor for annual medium-term earthquake prediction.  相似文献   

14.
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.  相似文献   

15.
Dividing the mainland China into different tectonic stress regions, we calculate tidal stress components along the seismic compressive and extensional principal stress axes at every earthquake’s focus in different tectonic stress regions. Tidal stress triggering effect on every earthquake fault is analyzed. Based on this, the lunar-solar location parameters on the occurring times of earthquakes which suffered tidal triggering effects are calculated, and the distribution patterns of the lunar-solar location parameters in different tectonic stress regions are obtained. The results indicate that earthquake tidal triggering effects and related astronomical characteristics are dependent on the properties of regional tectonic stress and the geographic locations of earthquake faults. Supported by the National Natural Science Foundation of China (Grant No. 40764001)  相似文献   

16.
In order to find out whether the geomagnetic storms and large-mega earthquakes are correlated or not, statistical studies based on Superposed Epoch Analysis (SEA), significance analysis, and Z test have been applied to the Dst index data and M ≥ 7.0 global earthquakes during 1957–2020. The results indicate that before M ≥ 7.0 global earthquakes, there are clearly higher probabilities of geomagnetic storms than after them. Geomagnetic storms are more likely to be related with shallow earthquakes rather than deep ones. Further statistical investigations of the results based on cumulative storm hours show consistency with those based on storm days, suggesting that the high probability of geomagnetic storms prior to large-mega earthquakes is significant and robust. Some possible mechanisms such as a reverse piezoelectric effect and/or electroosmotic flow are discussed to explain the statistical correlation. The result might open new perspectives in the complex process of earthquakes and the Lithosphere-Atmosphere-Ionosphere (LAI) coupling.  相似文献   

17.
We consider here prediction of abrupt overall changes (critical transitions) in the behavior of hierarchical complex systems, using the model developed in the first part of this study. The model merges the physical concept of colliding cascades with the mathematical framework of Boolean delay equations. It describes critical transitions that are due to the interaction between direct cascades of loading and inverse cascades of failures in a hierarchical system. This interaction is controlled by distinct delays between switching of elements from one state to another: loaded vs. unloaded and intact vs. failed. We focus on the earthquake prediction problem; accordingly, the model's heuristic constraints are taken from the dynamics of seismicity. The model exhibits four major types of premonitory seismicity patterns (PSPs), which have been previously identified in seismic observations: (i) rise of earthquake clustering; (ii) rise of the earthquakes' intensity; (iii) rise of the earthquake correlation range; and (iv) certain changes in the size distribution of earthquakes (Gutenberg–Richter relation). The model exhibits new features of individual PSPs and their collective behavior, to be tested in turn on observations. There are indications that the premonitory phenomena considered are not seismicity-specific, but may be common to hierarchical systems of a more general nature.  相似文献   

18.
The main challenge in the prediction of tectonic earthquakes and their control is still insufficient awareness of seismotectonic processes in the lithosphere and upper mantle during the preparation of strong earthquakes. This is associated in many respects with not quite appropriate equipment for researchers. Among relevant problems is also a lack of adequate models of preparation of earthquake sources at different stages, and this retards the development of earthquake prediction methods. The paper discusses long-term research on deformation and destruction of the Baikal ice cover in the context of physical mesomechanics. With certain combinations of meteorological factors (wind, temperature, precipitation, undercurrents, etc.) responsible for deformation, major cracks of many kilometers arise in the Baikal ice cover. Their spontaneous growth often involves seismic phenomena as ice quakes whose energy reaches E max = 104–107 J. The nucleation of major cracks is similar to that of rock bursts of moderate strength or weak earthquakes. It is found that ice quakes and earthquakes are both preceded by foreshocks, seismic calm for tens of minutes, aftershocks and other events against the background of accelerated creep in fractures and increased seismoacoustic activity. Research data make it possible to put forward two genetically interrelated criteria among basic factors for ice quake prediction: variations in deformation modes at convergent boundaries of ice sheets and a specific intensification mode-generation of strong foreshocks in a segment in which ice sheets are prepared for dynamic motion. We substantiate the conclusion that simpler and clearer scenarios of preparation of strong seismic events in the Baikal ice cover allow successful physical simulation of preparation of tectonic earthquakes and rock bursts and advances in their prediction. We also consider and substantiate the feasibility of techniques for more efficient seismic risk reduction.  相似文献   

19.
Kushida and Kushida found that FM radio waves from stations at distances over-the-horizon are received before earthquakes. Based on this finding, since the mid-1990’s, the Kushidas have been practicing “Earthquake Precursor Detection Experiment”. The performance of the Kushida method during 2000–2003 has been evaluated by checking their predictions against the actual seismicity. During the period, there were 92 Kushida predictions mentioning the possibility of M ≥ 5.5 event, whereas there were 49 M ≥ 5.5 earthquakes in the Japanese region. If the criteria for successful prediction are set as: the errors in date is less than one day, epicentral position is roughly within specified area, and error in M is less than 0.5, the success rate was 20% and the alarm rate was 12%. If we relax the criteria to: the errors in dates within 10 days, epicenter within additional 100 km of specified area and the magnitude error less than 1.0, the success rate was 40% and the alarm rate was 27%. These rates may look insufficient for a practical prediction method. Considering, however, the fact that no other short-term prediction has ever been made in Japan so far it is a significant achievement. Moreover, it was found that in almost all failed predictions, meaningful signals were detected although the interpretations were incorrect. This indicates that the method is promising provided further investigation is carried out. The same evaluation at the M ≥ 6.0 level showed that the general performance was similar to the M ≥ 5.5 level, except that both success rate and alarm rate were lower at the M ≥ 6.0 level. If this unexpected finding is real, it might be inherent to the methodology using scattering of short-wave length radio waves as suggested by M. Hayakawa and may contain important information in understanding the earthquake physics and LAI-coupling. The results of the present study indicate strongly that the earthquake prediction research using anomalous transmission of VHF FM radio waves should be enhanced in parallel with complementary research in other frequency ranges.  相似文献   

20.
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially “scale-free”, displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号