首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp 2 carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet–visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF–SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to π bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.  相似文献   

2.
Paracetamol interaction with rat liver mitochondria in respiration media in the presence of succinate was the focus of this experiment. Fluorescence of paracetamol in water was studied by three-dimensional synchronous fluorescence fingerprint (SFF) and by excitation emission matrix (EEM). The direct molecular interactions of paracetamol and mitochondria were studied by fluorescence polarization technique. The paracetamol fluorescence maximum of SFF was Δλ = 110/λex = 320 nm, Fmax = 508 nm, and EEM maximum was λex = (320 nm)/λem = 425 nm, Fmax = 508. The fluorescence polarization results showed nonsignificant elevation of fluorescence polarization after addition of paracetamol into mitochondria in comparison to the control mitochondria group without paracetamol at time point t = 0. Paracetamol probably covalently bound to the mitochondrial surface proteins at time point t = 0, but paracetamol also entered mitochondria, which was observed as nonsignificant decline of fluorescence polarization during 30 min in the paracetamol-treated group. The practical advantages of spectral techniques (EEM, SFF, fluorescence polarization) are high sensitivity, reproducibility, minimal quantity of material, and capability to measure the mitochondrial autofluorescence.  相似文献   

3.
The synthesis of a new class of fluorescent carbon nanomaterials, carbon‐dot‐decorated nanodiamonds (CDD‐ND), is reported. These CDD‐NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 1–2 atomic layers thick and 1–2 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD‐ND. The CDD‐ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well‐purified NDs and can be tailored by changing the oxidation process parameters. Carbon‐dot‐decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  相似文献   

4.
Diamond nanoparticles (NDs) have demonstrated great promise as useful materials in a variety of biomedical settings. In this paper, the antimicrobial and antibiofilm activities of variously functionalized NDs against two common bacterial targets Gram‐negative bacterium Escherichia coli and Gram‐positive bacterium Staphylococcus aureus are compared. Hydroxylated (ND‐OH), aminated (ND‐NH2), carboxylated (ND‐COOH), mannose (ND‐Mannose), tri‐thiomannoside (ND‐Man3), or tri‐thiolactoside (ND‐Lac3)‐modified NDs are fabricated and evaluated in the present work. Of these, the mannose‐modified NDs are found to interfere most strongly with the survival of S. aureus, but not to influence the growth of E. coli. In contrast, particles featuring lactosyl units have the opposite effect on S. aureus growth. Sugar‐functionalized NPs reported to display antibacterial effects are rare. Only ND‐COOH particles are seen to have any effect on the growth profile of E. coli, but the effects are moderate. On the other hand, both ND‐NH2 and ND‐COOH are found to inhibit E. coli‐induced biofilm formation at levels comparable to the known E. coli biofilm disruptor, ampicillin (albeit at concentrations of 100 μg mL?1). However, none of the modified particles examined here reveal any significant activity as disruptors of S. aureus‐induced biofilm formation even at the highest concentrations studied.  相似文献   

5.
天然无结构蛋白alpha-突触核蛋白(α-synuclein)能影响线粒体的形态、动力学及损害线粒体正常功能,被认为是帕金森症的致病机制之一.α-synuclein与线粒体模拟膜及分离提取的完整线粒体的相互作用研究是理解该蛋白如何影响线粒体的有效途径.文献报道α-synuclein能与磷脂模拟的线粒体内膜相互作用却不与模拟的外膜相互作用,且N端在与线粒体的结合中扮演重要角色,但具体的作用位点仍不十分清楚.本文利用核磁共振(NMR)方法研究了α-synuclein与大鼠肝脏中分离的完整线粒体的相互作用,发现α-synuclein能与线粒体外膜相互作用,且作用区域位于α-synuclein N端的前60个氨基酸残基.这一结果与文献报道并不相同,可能是因为α-synuclein与线粒体外膜的作用不仅依赖于膜组分,可能也和膜的曲率或膜上其他组分等相关,而这些是模拟膜所不易体现的.同时,我们的研究也证实NMR是研究蛋白质与分离完整线粒体相互作用的有效方法.  相似文献   

6.
The results of polishing (using suspensions of nanodiamonds (NDs) produced by detonation synthesis at different plants) of the surfaces of 23 solid materials having different chemical compositions, production processes, structure, electronic properties, hardness, reactivity, and application are described. Atomic force microscopy is used to compare the roughness of these surfaces with the surfaces of such materials subjected to polishing with diamond synthetic micropowders (of grades 1/0, 0.25/0, 0.1/0) and to chemical-mechanical polishing (CMP) with amorphous colloid silica. Stable ND suspensions are shown to cause a number of effects, namely, polishing, scratching, plastic flow of surface layers, and CMP. The aggregative state of solid particles is shown to be of importance. Polishing with NDs is found to be accompanied by mechanical nanoscratching, which can be leveled by the introduction of certain etchants into an ND suspension. The use of amorphous nanoparticles is the only technique that does not induce deformation in the surface layer of a material.  相似文献   

7.
Nanodiamonds (NDs) are members of the diverse structural family of nanocarbons that includes many varieties based on synthesis conditions, post-synthesis processes, and modifications. First studied in detail beginning in the 1960s in Russia, NDs have now gained world-wide attention due to their inexpensive large-scale synthesis based on the detonation of carbon-containing explosives, small primary particle size (~ 4 to 5 nm) with narrow size distribution, facile surface functionalization including bio-conjugation, as well as high biocompatibility. It is anticipated that the attractive properties of NDs will be exploited for the development of therapeutic agents for diagnostic probes, delivery vehicles, gene therapy, anti-viral and anti-bacterial treatments, tissue scaffolds, and novel medical devices such as nanorobots. Additionally, biotechnology applications have shown the prospective use of NDs for bioanalytical purposes, such as protein purification or fluorescent biolabeling. This review critically examines the use of NDs for biomedical applications based on type (i.e., high-pressure high-temperature [HPHT], CVD diamond, detonation ND [DND]), post-synthesis processing and modifications, and resultant properties including bio-interfacing. The discussion focuses on nanodiamond material in the form of nanoparticles, while the biomedical uses of nanodiamond coatings and thin films are discussed rather briefly. Specific use of NDs in both non-conjugated and conjugated forms as enterosorbents or solid phase carriers for small molecules including lysozyme, vaccines, and drugs is also considered. The use of NDs as human anti-cancer agents and in health care products is already showing promising results for further development. The review concludes with a look to the future directions and challenges involved in maximizing the potential of these exciting little carbon-based gems in the fields of engineering, medicine, and biotechnology.  相似文献   

8.
We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation ‘space’ contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond.  相似文献   

9.
Phase-changeable contrast agents have been proposed as a next-generation ultrasound contrast agent over conventional microbubbles given its stability, longer circulation time and ability to extravasate. Safe vaporization of nanodroplets (NDs) plays an essential role in the practical translation of ND applications in industry and medical therapy. In particular, the exposure parameters for initializing phase change as well as the site of phase change are concerned to be controlled. Compared to the traditional optical vaporization or acoustic droplet vaporization, this study exhibited the potential of using simultaneous, single burst laser and ultrasound incidence as a means of activating phase change of NDs to generate cavitation nuclei with reduced fluence and sound pressure. A theoretical model considering the laser heating, vapor cavity nucleation and growth was established, where qualitative agreement with experiment findings were found in terms of the trend of combined exposure parameters in order to achieve the same level of vaporization outcome. The results indicate that using single burst laser pulse and 10-cycle ultrasound might be sufficient to lower the exposure levels under FDA limit for laser skin exposure and ultrasound imaging. The combination of laser and ultrasound also provides temporal and spatial control of ND vaporization and cavitation nucleation without altering the sound field, which is beneficial for further safe and effective applications of phase-changeable NDs in medical, environmental, food processing and other industrial areas.  相似文献   

10.
Experiments by F. Zhou and coworkers (2010) [16] showed that mitochondria are the main target of the cellular accumulation of single-walled carbon nanotubes (SWCNTs). Our in silico experiments, based on geometrical optimization of the system consisting of SWCNT+proton within Density Functional Theory, revealed that protons can bind to the outer side of SWCNT so generating a positive charge. Calculation results allow one to propose the following mechanism of SWCNTs mitochondrial targeting. SWCNTs enter the space between inner and outer membranes of mitochondria, where the excess of protons has been formed by diffusion. In this compartment SWCNTs are loaded with protons and acquire positive charges distributed over their surface. Protonation of hydrophobic SWCNTs can also be carried out within the mitochondrial membrane through interaction with the protonated ubiquinone. Such “charge loaded” particles can be transferred as “Sculachev ions” through the inner membrane of the mitochondria due to the potential difference generated by the inner membrane. Physiological consequences of the described mechanism are discussed.  相似文献   

11.
The adsorption of pyridine on coldly deposited Ag films annealed at temperatures ranging from 58 to 330 K, the porous surface topography of which has been investigated in part I of this work, has been studied by means of UPS, work function change and thermal desorption measurements. Pyridine induced work function changes have been employed to follow the surface diffusion of pyridine molecles into the pores of these Ag films. The surface diffusion is very slow below 60 K, but readily takes place at 130 K with an estimated activation energy of surface migration of Em ≈ 4 kcal/mol. Preadsorption of Xe into the pores of the films causes inhibition of pyridine diffusion into the pores. The onset of pyridine desorption from porous films is detected at ≈ 200 K while from flat films the desorption begins already at 150 K. The careful analysis of our data on the structure of the coldly deposited Ag films and the adsorption behavior of pyridine on these films as well as a survey of published SERS data lead us to conclude that the SERS active sites of coldly deposited Ag films are within the pores. This conclusion is in agreement with recent theoretical calculations.  相似文献   

12.
We have investigated the nucleation and evolution of germanium (Ge) nanodot (ND)s taking place while depositing Ge onto the silicon (Si) (1 1 1) surfaces with ultra-thin Si oxide films by using ultra-high vacuum in situ high-resolution transmission electron microscopy in the profile-imaging geometry. Various types of growth phenomena such as nucleation, growth and coalescence of Ge NDs have successfully been observed. The results show that the growth phenomena of the Ge NDs are dramatically rapid after their size reaches the size of the critical nucleus. The critical nucleus size estimated from a model using the cohesive energy of the Ge NDs has been consistent with observed one.  相似文献   

13.
Mitochondria play critical roles in both the life and the death of cardiac myocytes. Various factors, such as the loss of ATP synthesis and increase of ATP hydrolysis, impairment in ionic homeostasis, formation of reactive oxygen species (ROS), and release of proapoptotic proteins are related to the generation of irreversible damage. It has been proposed that the release of cytochrome c is caused by a swelling of the mitochondrial matrix triggered by the apoptotic stimuli. However, there is a controversy about whether or not the mitochondria, indeed, swell during apoptosis. The major advantages of atomic force microscopy (AFM) over conventional optical and electron microscopes for bio-imaging include the fact that no special coating and vacuum are required and imaging can be done in all environments--air, vacuum or aqueous conditions. In addition, AFM force-distance curve measurements have become a fundamental tool in the fields of surface chemistry, biochemistry, and material science. In this study, we used AFM to observe the morphological and property changes in heart mitochondria that were isolated from a rat myocardial infarction model. From the shape parameters of the mitochondria in the AFM topographic image, it seemed that myocardial infarction caused the mitochondrial swelling. Also, the results of force-distance measurements showed that the adhesion force of heart mitochondria was significantly decreased by myocardial in infarction. Therefore, we suggested that myocardial infarction might be the cause of mitochondrial swelling and the changes in outer membrane of heart mitochondria.  相似文献   

14.
Our recent report demonstrated that genotoxic stimuli enhance mitochondrial energy metabolism in various tumor cell lines. However, the mitochondrial response against genotoxic stimuli has not been fully elucidated. In this study, to investigate mitochondrial functions in X-irradiated cells, the oxygen consumption rate (OCR) in human cervical adenocarcinoma HeLa cells was examined by electron spin resonance (ESR) spectroscopy with lithium 5,9,14,18,23,27,32,36-octa-n-butoxy-2,3-naphthalocyanine. ESR oximetry demonstrated that basal respiration, ATP-linked respiration, proton leak, maximal respiration, and reserve capacity increased in HeLa cells 24 h after X-irradiation. However, a flow cytometric analysis using MitoTracker Green showed that mitochondrial mass also increased following X-irradiation. When the OCR was standardized to the mitochondria membrane mass, the radiation-induced increases in the respiratory parameters disappeared. This finding indicated that the radiation-induced increase in cellular OCR was explained by an increase in mitochondrial mass but not by the activation of mitochondrial respiratory-related enzymes. In addition, mitochondrial semiquinone radicals at g?=?2.004 were detected by low-temperature (110 K) ESR spectroscopy. The ESR signal intensity of semiquinone radicals was enhanced by X-irradiation, suggesting an increase in the electron flow in the electron transport chain. These data will be important to understand the mechanism of radio-sensitization by mitochondria-targeting reagents in tumor cells.  相似文献   

15.
Nanostructured supramolecular complex of europium(III) with bathophenanthroline (bphen), with detonation synthesis nanodiamonds (NDs) used as a structure-forming element, has been synthesized for the first time. The characteristics of the Eu(bphen)2(NO3)3 complex and the supramolecular complex with NDs, ND–Eu(bphen)2(NO3)2, are studied and compared using scanning electron microscopy (SEM), luminescence spectroscopy, IR spectroscopy, and electron-spin resonance (ESR) spectroscopy. The luminescence quantum yields of the complexes are estimated by the relative method using a β-diketonate complex of europium (III) with tris(thenoyltrifluoroacetone) and 1,10-phenanthroline (Eu(TTA)3phen) as a reference. It is found that the ND–Eu(bphen)2(NO3)2 supramolecular complex has a higher photoresistance than the complex without NDs and no worse thermal stability (up to a temperature of +150°C).  相似文献   

16.
Liquid perfluorocarbon nanodroplets (NDs) are an attractive alternative to microbubbles (MBs) for ultrasound-mediated therapeutic and diagnostic applications. ND size and size distribution have a strong influence on their behaviour in vivo, including extravasation efficiency, circulation time, and response to ultrasound stimulation. Thus, it is desirable to identify ways to tailor the ND size and size distribution during manufacturing. In this study phospholipid-coated NDs, comprising a perfluoro-n-pentane (PFP) core stabilised by a DSPC/PEG40s (1,2-distearoyl-sn-glycero-3-phosphocholine and polyoxyethylene(40)stearate, 9:1 molar ratio) shell, were produced in phosphate-buffered saline (PBS) by sonication. The effect of the following production-related parameters on ND size was investigated: PFP concentration, power and duration of sonication, and incorporation of a lipophilic fluorescent dye. ND stability was also assessed at both 4 °C and 37 °C. When a sonication pulse of 6 s and 15% duty cycle was employed, increasing the volumetric concentration of PFP from 5% to 15% v/v in PBS resulted in an increase in ND diameter from 215.8 ± 16.8 nm to 408.9 ± 171.2 nm. An increase in the intensity of sonication from 48 to 72 W (with 10% PFP v/v in PBS) led to a decrease in ND size from 354.6 ± 127.2 nm to 315.0 ± 100.5 nm. Increasing the sonication time from 20 s to 40 s (using a pulsed sonication with 30% duty cycle) did not result in a significant change in ND size (in the range 278–314 nm); however, when it was increased to 60 s, the average ND diameter reduced to 249.7 ± 9.7 nm, which also presented a significantly lower standard deviation compared to the other experimental conditions investigated (i.e., 9.7 nm vs. > 49.4 nm). The addition of the fluorescent dye DiI at different molar ratios did not affect the ND size distribution. NDs were stable at 4 °C for up to 6 days and at 37 °C for up to 110 min; however, some evidence of ND-to-MB phase transition was observed after 40 min at 37 °C. Finally, phase transition of NDs into MBs was demonstrated using a tissue-mimicking flow phantom under therapeutic ultrasound exposure conditions (ultrasound frequency: 0.5 MHz, acoustic pressure: 2–4 MPa, and pulse repetition frequency: 100 Hz).  相似文献   

17.
Patients diagnosed with nodules (NO = 40) in a large university hospital clinic and an age-stratum matched nondiseased group (ND = 200) described adverse outcomes of vocal impairment on work and work-related communications. NOs were significantly more likely than NDs to report symptoms of hoarseness (73% vs. 26%), high-note difficulty (70% vs. 20%), difficulty speaking with a lower voice (53% vs. 13%) and a tired voice (50% vs. 10%), and their greatest source of physical discomfort was associated with scratchiness (61% vs. 3%). The average number of symptoms was four in NOs and less than one in NDs. Nodule patients were most concerned about the effects their voice problem would have on their future career (78% vs. 24%) and 49% of NOS reported their voice problem had an adverse work effect in the past compared with 4% of NDs. Having a voice condition limited current job performance in 39% of the NO group but only in 2% of the ND group. The results suggest that a diagnosis of nodules plays a major role in disrupting careers and work activities and that available educational programs and additional research are needed for improving their functional ability and preventing adverse outcomes in the lives of individuals with voice disorders.  相似文献   

18.
Xu J  Xia X  Leung AW  Xiang J  Jiang Y  Yu H  Bai D  Li X  Xu C 《Ultrasonics》2011,51(4):480-484
Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H22 cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm2 for 8 s. Cytotoxicity was investigated 24 h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM).The cytotoxicity of MPPa-mediated SDT on H22 cell line was 73.00 ± 3.42%, greater than ultrasound treatment alone (28.12 ± 5.19%) significantly while MPPa treatment alone had no significant effect on H22 cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H22 cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT.  相似文献   

19.
20.
Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号