首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. B. Zhao  R. Gomer 《Surface science》1991,250(1-3):81-89
The electron impact behavior of CO adsorbed on Pd1/W(110) was investigated. The desorption products observed were neutral CO, CO+, and O+. After massive electron impact residual carbon, C/W = 0.15, but not oxygen was also found, suggesting that energetic neutral O, not detected in a mass analyzer must also have been formed. Formation of β-CO, i.e., dissociated CO with C and O on the surface was not seen. The total disappearance cross section varies only slightly with coverage, ranging from 9 × 10 −18 cm2 at low to 5 × 10−18 cm2 at saturation (CO/W = 0.75). The cross section for CO+ formation varies from 4 × 10−22 cm2 at satura to 2 × 10−21 cm2 at low coverage. That for O+ formation is 1.4 × 10−22 cm2 at saturation and 2 × 10−21 cm2 Threshold energies are similar to those found previously [J.C. Lin and R. Gomer, Surf. Sci. 218 (1989) 406] for CO/W(110) and CO/Cu1/W(110) which suggests similar mechanisms for product formation, with the exception of β-CO on clean W(110). It is argued that the absence or presence of β-CO in ESD hinges on its formation or absence in thermal desorption, since electron impact is likely to present the surface with vibrationally and rotationally activated CO in all cases; β-CO formation only occurs on surfaces which can dissociate such CO. It was also found that ESD of CO led to a work function increase of the remaining Pd1/W(110) surface of 500 meV, which could be annealed out only at 900 K. This is attributed to surface roughness, caused by recoil momentum of energetic desorbing entities.  相似文献   

2.
TheY2Σ+–X2Πinear-infrared electronic transition of CuO was observed at high resolution for the first time. The spectrum was recorded with the Fourier transform spectrometer associated with the McMath–Pierce Solar Telescope at Kitt Peak. The excited CuO molecules were produced in a low pressure copper hollow cathode sputter with a slow flow of oxygen. Constants for theY2Σ+states of CuO are:T0= 7715.47765(54) cm−1,B= 0.4735780(28) cm−1,D= 0.822(12) × 10−6cm−1,H= 0.46(10) × 10−10cm−1, γ = −0.089587(42) cm−1, γD= 0.1272(79) × 10−6cm−1,bF= 0.12347(22) cm−1, andc= 0.0550(74) cm−1. ImprovedX2Πiconstants are also presented.  相似文献   

3.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect.  相似文献   

4.
In this paper we present a new discharge technique to excite slab CO2 lasers. A uniform stable glow discharge has been obtained in a volume of 3 × 30 × 446 mm3. Output power is 10 W, and a gain of 0.26% cm−1 has been obtained.  相似文献   

5.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10−3 cm−1. The value of the parameter (αB − αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm−1, B″ = 0.68216(9) cm−1, DJ = 1.10(30) × 10−6 cm−1, αB = (B″ − B′) = 3.086(7) × 10−3 cm−1, and βJ = (DJDJ) = −3.24(11) × 10−7 cm−1. A value of αA = (A″ − A′) = 2.90(5) × 10−3 cm−1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

6.
The chemisorption of CO on W(100) at ~ 100K has been studied using a combination of flash desorption and electron stimulated desorption (ESD) techniques. This is an extension of a similar study made for CO adsorption on W(100) at temperatures in the range 200–300K. As in the 200–300 K CO layer, both α1-CO and α2-CO are formed in addition to more strongly bound CO species upon adsorption at ~ 100K; the α-CO states yield CO+ and O+ respectively upon ESD. At low CO coverages, the α1 and α2-CO states are postulated to convert to β-CO or other strongly bound CO species upon heating. At higher CO coverages, α1-CO converts to α2-CO upon thermal desorption or electron stimulated desorption. There is evidence for the presence of other weakly-bound states in the low temperature CO layer having low surface concentration at saturation. The ESD behavior of the CO layer coadsorbed with hydrogen on W(100) is reported, and it is found that H(ads) suppresses either the concentration or the ionic cross section for α1 and α2-CO states.  相似文献   

7.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

8.
Several elementary reactions of formyl radical of combustion importance were studied using pulsed laser photolysis coupled to transient UV–Vis absorption spectroscopy: HCO → H + CO (1), HCO + HCO → products (2), and HCO + CH3 → products (3). One-pass UV absorption, multi-pass UV absorption as well as cavity ring-down spectroscopy in the red spectral region were used to monitor temporal profiles of HCO radical. Reaction (1) was studied over the buffer gas (He) pressure range 0.8–100 bar and the temperature range 498–769 K. Reactions (2a), (2b), (2c), (3a) and (3b) as well as the UV absorption spectrum of HCO, were studied at 298 and 588 K, and the buffer gas (He) pressure of 1 bar. Pulsed laser photolysis (308, 320, and 193 nm) of acetaldehyde, propionaldehyde, and acetone was used to prepare mixtures of free radicals. The second-order rate constant of reaction (1) obtained from the data at 1 bar is: k1(He) = (0.8 ± 0.4) × 10−10exp(−(66.0 ± 3.4) kJ mol−1/RT) cm3 molecule−1 s−1. The HCO dissociation rate constants measured in this work are lower than those reported in the previous direct work. The difference is a factor of 2.2 at the highest temperature of the experiments and a factor of 3.5 at the low end. The experimental data indicate pressure dependence of the rate constant of dissociation of formyl radical 1, which was attributed to the early pressure fall-off expected based on the theory of isolated resonances. The UV absorption spectrum of HCO was revised. The maximum absorption cross-section of HCO is (7.3 ± 1.2) × 10−18 cm2 molecule−1 at 230 nm (temperature independent within the experimental error). The measured rate constants for reactions (2a), (2b), (2c), (3a) and (3b) are: k2 = (3.6 ± 0.8) × 10−11 cm3 molecule−1 s−1 (298 K); k3 = (9.3 ± 2.3) × 10−11 cm3 molecule−1 s−1(298 and 588 K).  相似文献   

9.
High resolution Fourier transform spectra of deuterated hydrogen sulfide have been recorded in the region 2400-3000 cm−1. Rotational structures of the ν1 + ν2, ν2 + ν3 bands of D232S, of the ν3 and ν1 + ν2 bands of HD32S, and of the ν1 + ν2 band of HD34S were analyzed. Band centers and rotational, centrifugal distortion, and resonance parameters were obtained, which reproduce the initial values of the upper energy levels within a mean accuracy of 1.39 × 10−4 cm−1 for the states (110) and (011) of D232S, 1.61 × 10−4 cm−1 and 1.82 × 10−4 cm−1 for the states (001) and (110) of HD32S, and 2.09 × 10−4 cm−1 for the state (110) of HD34S, respectively.  相似文献   

10.
The ion angular distributions resulting from electron stimulated desorption (ESD) of oxygen and carbon monoxide chemisorbed on a tungsten (111) crystal have been determined. The O+ ions released during ESD of adsorbed oxygen exhibit three-fold symmetric angular distributions in orientational registry with the W(111) substrate. The CO+ and O+ ions released during ESD of a monolayer of CO are desorbed normal to the (111) surface. Models for both oxygen and CO adsorption are discussed. The data for CO are consistent with adsorption of CO in “standing up” carbonyl structures in the virgin and α-CO binding states.  相似文献   

11.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

12.
Ultrasonic irradiation (22 kHz, Ar atmosphere) of Th(IV) β-diketonates Th(HFAA)4 and Th(DBM)4, where HFAA and DBM are hexafluoroacetylacetone and dibenzoylmethane respectively, causes them to decompose in hexadecane solutions, forming solid thorium compounds. The first-order rate constants for Th(IV) β-diketonate degradation were found to be (9.3±0.8)×10−3 for Th(HFAA)4 and (3.8±0.4)×10−3 min−1 for Th(DBM)4, (T=92°C, I=3 W cm−2). The rate of the sonochemical reaction increased with the rising β-diketonate volatility and decreased with the rising hydrocarbon solvent vapor pressure. Solid sonication products consisted of a mixture of thorium carbide ThC2 and Th(IV) β-diketonate partial degradation products. The average ThC2 particle size was estimated to be about 2 nm. ThC2 formation was attributed to the high-temperature reaction occurring within the cavitating bubble. The thorium β-diketonate partial degradation products formed in the liquid reaction zones surrounding the cavitating bubbles.  相似文献   

13.
Molecular constants for the E0+(3P2) and 1(3P2) ion-pair states of ICl vapor have been determined using sequential two-photon polarization-labeling spectroscopy. The two states are coupled by a heterogeneous perturbation which is analyzed in some detail for low-lying vibrational levels of 1(3P2). The I35Cl potential constants for the 1(3P2) state and the rotation-vibration constants for the set of f sublevels—i.e., the constants unaffected by coupling with the E state—are (in cm−1) 1(3P2): Y0,0= 39103.814(32), Y1,0= 170.213(15), Y2,0= −0.4528(22), Y3,0= −7.0(12) × 10−4, Y4,0= −1.48(24) × 10−5 and Y5,0= −6.6(19) × 10−8, Y(f)0,1= 5.6878(17) × 10−2 Y(f)1,1= −2.110(24) × 10−4, Y(f)2,1= −1.23(62) × 10−7, and Y(f)0,1= −3.08(22) × 10−8Likewise, the I35Cl constants determined for the E 0+(3P2) state are E 0+(3P2: Y0,0= 39054.38(61), Y1,0= 166.96(10), Y2,0 = −0.3995(42), Y0,1= 5.738(31) × 10−2, and Y1,1= −1.67(26) × 10−4Practical constraints in pumping the sequence E 0+B 0+ ← × 0+ restrict the analysis of the E state to levels v = 9–15. Given the long extrapolation to the equilibrium state the 3σ statistical uncertainties quoted for these constants should be treated with caution.  相似文献   

14.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

15.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

16.
The structural properties of a 10 μm thick In-face InN film, grown on Al2O3 (0001) by radio-frequency plasma-assisted molecular beam epitaxy, were investigated by transmission electron microscopy and high resolution x-ray diffraction. Electron microscopy revealed the presence of threading dislocations of edge, screw and mixed type, and the absence of planar defects. The dislocation density near the InN/sapphire interface was 1.55×1010 cm−2, 4.82×108 cm−2 and 1.69×109 cm−2 for the edge, screw and mixed dislocation types, respectively. Towards the free surface of InN, the density of edge and mixed type dislocations decreased to 4.35×109 cm−2 and 1.20×109 cm−2, respectively, while the density of screw dislocations remained constant. Using x-ray diffraction, dislocations with screw component were found to be 1.2×109 cm−2, in good agreement with the electron microscopy results. Comparing electron microscopy results with x-ray diffraction ones, it is suggested that pure edge dislocations are neither completely randomly distributed nor completely piled up in grain boundaries within the InN film.  相似文献   

17.
Absorption spectra of C2H2 have been recorded between 50 and 1450 cm−1, with a resolution always better than 0.005 cm−1, using two different Fourier transform spectrometers. Analysis of the data provided two sets of results. First, the bending levels with Σt Vt(t = 4, 5) ≤ 2 were characterized by a coherent set of 34 parameters derived from the simultaneous analysis of 15 bands, performed using a matrix Hamiltonian. The following main parameters were obtained (in cm−1): ω40 = 608.985196(14), ω50 = 729.157564(10); B0 = 1.17664632(18), α4 = −1.353535(86) × 10−3, α5 = −2.232075(40) × 10−3; q40 = 5.24858(12) × 10−3, and q50 = 4.66044(12) × 10−3, with the errors (1σ) on the last quoted digit. Second, a more complete set of bending levels with Σt Vt ≤ 4, some of which have never previously been reported, and also including V2 = 1 have been fitted to 80 parameters. This simultaneous fit involved 43 bands and used the same full Hamiltonian matrix. Some perturbations which affect the higher excited levels are discussed.  相似文献   

18.
We review the progress in the industrial production of SiC substrates and epitaxial layers for high power semiconductor devices. Optimization of SiC bulk growth by the sublimation method has resulted in the commercial release of 100 mm n-type 4H-SiC wafers and the demonstration of micropipe densities as low as 0.7 cm−2 over a full 100 mm diameter. Modelling results link the formation of basal plane dislocations in SiC crystals to thermoelastic stress during growth. A warm-wall planetary SiC-VPE reactor has been optimized up to a 8×100 mm configuration for the growth of uniform 0.01–80-micron thick, specular, device-quality SiC epitaxial layers with low background doping concentrations of <1×1014 cm−3, and intentional p- and n-type doping from 1×1015 to >1×1019 cm−3. We address the observed degradation of the forward characteristics of bipolar SiC PiN diodes [H. Lendenmann, F. Dahlquist, J.P. Bergmann, H. Bleichner, C. Hallin, Mater. Sci. Forum 389–393 (2002) 1259], and discuss the underlying mechanism due to stacking fault formation in the epitaxial layers. A process for the growth of the epitaxial layers with a basal plane dislocation density <10 cm−2 is demonstrated to eliminate the formation of these stacking faults during device operation [J.J. Sumakeris, M. Das, H.McD. Hobgood, S.G. Müller, M.J. Paisley, S. Ha, M. Skowronski, J.W. Palmour, C.H. Carter Jr., Mater. Sci. Forum 457–460 (2004) 1113].  相似文献   

19.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

20.
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号