首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report ab initio calculations of nonequilibrium quantum transport properties of Fe/MgO/Fe trilayer structures. The zero bias tunnel magnetoresistance is found to be several thousand percent, and it is reduced to about 1000% when the Fe/MgO interface is oxidized. The tunnel magnetoresistance for devices without oxidization reduces monotonically to zero with a voltage scale of about 0.5-1 V, consistent with experimental observations. We present an understanding of the nonequilibrium transport by investigating microscopic details of the scattering states and the Bloch bands of the Fe leads.  相似文献   

2.
Ke Y  Xia K  Guo H 《Physical review letters》2010,105(23):236801
By first principles analysis, we systematically investigate effects of oxygen vacancies (OV) in the MgO barrier of Fe/MgO/Fe magnetic tunnel junctions. The interchannel diffusive scattering by disordered OVs located at or near the Fe/MgO interface drastically reduces the tunnel magnetoresistance ratio (TMR) from the ideal theoretical limit to the presently observed much smaller experimental range. Interior OVs are far less important in influencing TMR, but they significantly increase the junction resistance. Filling OV with nitrogen atoms restores TMR to near the ideal theoretical limit.  相似文献   

3.
Spin-dependent transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two Fe electrodes separated by an MgO insulating barrier. Our calculations are based on the first-principle density functional theory including the metal–oxide interface. Modifications are observed in the electronic and magnetic structure of the interface as a result of oxidation. Spin polarizations (SPs) more than 80% and ?86% are obtained at zero temperature for clean interfaces in the parallel and anti-parallel alignments of the ferromagnetic electrodes, respectively, when a 7 monolayer MgO is used as the barrier. In the parallel alignment, the zero-bias SP is observed to be positive throughout the barrier reaching to a maximum at the central point. On the other hand, in the anti-parallel alignment, the SP of the electrodes is seen to penetrate deep into the barrier. The effects of interface oxidation on the band structure of the electrode surfaces are simulated using the fixed-spin-moment calculations. Also, we study dependence of the tunneling magnetoresistance on the barrier thickness and applied voltage in the trilayer within the effective mass approximation. It is shown that the TMR ratio decreases rapidly with increasing the barrier thickness and applied voltage. Our calculations explain qualitatively the main features of the recent experimental observations. Our results may be useful for the development of spintronic devices.  相似文献   

4.
Effects of lattice distortion and oxygen vacancy on tunnel magnetoresistance in Fe/MgO/Fe junctions are theoretically investigated. By treating the distortion in MgO as the random potential and performing numerical simulations based on the Kubo–Landauer formula, it is shown that the magnetoresistance ratio decreases with increasing randomness. Moreover, first-principles calculations within the density functional theory show that the defect states in the Fe/MgO cluster containing an oxygen vacancy induce no significant shift in the Fermi level.  相似文献   

5.
A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions.  相似文献   

6.
Electronic structure and spin-related state coupling at ferromagnetic material(FM)/MgO(FM = Fe, CoFe, CoFeB)interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is superior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majorityspin ?_1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin ?_1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin ?_1 state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance(TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling at strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel junctions with high tunneling magnetoresistance effect.  相似文献   

7.
We present x-ray diffraction experiments and multiple-scattering calculations on the structure and transport properties of a Fe/MgO/Fe(001) magnetic tunnel junction (MTJ). Coherent growth of the top Fe electrode on the MgO spacer is observed only for Fe deposition in ambient oxygen atmosphere leading to a coherent and symmetric MTJ structure characterized by FeO layers at both interfaces. This goes in parallel with calculations indicating large positive tunnel magnetoresistance (TMR) values in such symmetric junctions. The results have important implications for achieving giant TMR values.  相似文献   

8.
Oxygen vacancies in the MgO barriers of epitaxial Fe/MgO/Fe magnetic tunnel junctions are observed to introduce symmetry-breaking scatterings and hence open up channels for noncoherent tunneling processes that follow the normal WKB approximation. The evanescent waves inside the MgO barrier thus experience two-step tunneling, the coherent followed by the noncoherent process, and lead to lower tunnel magnetoresistance, higher junction resistance, as well as increased bias and temperature dependence. The characteristic length of the symmetry scattering process is determined to be about 1.6 nm.  相似文献   

9.
We perform an ab initio study of spin-polarized tunneling in epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions with bcc Co(001) electrodes. We predict a large tunneling magnetoresistance in these junctions, originating from a mismatch in the majority- and minority-spin bands both in bulk bcc Co and at the Co/SrTiO(3)/Co interface. The intricate complex band structure of SrTiO(3) enables efficient tunneling of the minority d electrons which causes the spin polarization of the Co/SrTiO(3)/Co interface to be negative in agreement with experimental data. Our results indicate that epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions with bcc Co(001) electrodes are a viable alternative for device applications.  相似文献   

10.
The geometric structure of MgO deposited on Fe(001) in ultrahigh vacuum by electron evaporation was determined in detail by using surface x-ray diffraction. In contrast to the common belief that MgO grows in direct contact on the Fe(001) substrate, we find an FeO interface layer between the substrate and the growing MgO structure which has not been considered thus far. This result opens new perspectives for the understanding of the Fe/MgO/Fe(001) interface and the tunneling magnetoresistance effect in general.  相似文献   

11.
Perpendicular electric transport in Fe/InP/Fe heterostructures with different terminations is investigated within the relativistic spin-polarized version of the screened Korringa–Kohn–Rostoker method and the Kubo–Greenwood formula, and compared to a Landauer-like approach. Both methods show that the magnetoresistance becomes constant with increasing spacer thickness.  相似文献   

12.
We investigate the electronic structure of Fe/ZnSe/Fe magnetic tunnel junctions for which interdiffusion and reconstruction at the interfaces are considered. Taking into account the ab initio potential profile throughout the different layers of the structure, we discuss about its implications on the tunnel conductance. Our results show that interface reconstruction drives changes in the electronic structure which, in turn, produce an increase of the kinetic energy of the conduction electrons, independently of their spin orientation. We suggest that this reconstruction underlies the low tunnel magnetoresistance (TMR), as it is observed in transport measurements when compared with the theoretical value estimated for sharp interfaces.  相似文献   

13.
First-principles density functional calculations demonstrate that a spin-polarized two-dimensional conducting state can be realized at the interface between two nonmagnetic band insulators. The (001) surface of the diamagnetic insulator FeS(2) (pyrite) supports a localized surface state deriving from Fe d orbitals near the conduction band minimum. The deposition of a few unit cells of the polar perovskite oxide LaAlO(3) leads to electron transfer into these surface bands, thereby creating a conducting interface. The occupation of these narrow bands leads to an exchange splitting between the spin subbands, yielding a highly spin-polarized conducting state distinct from the rest of the nonmagnetic, insulating bulk. Such an interface presents intriguing possibilities for spintronics applications.  相似文献   

14.
Spin-dependent electron reflection from MgO thin films grown on Fe(001) was measured using spin-polarized low energy electron microscopy. The electron reflectivity exhibits quantum interference from which two MgO energy bands with Delta1 symmetry were determined in experiment. We found that a bulklike MgO energy gap is fully established for MgO film thicker than 3 atomic monolayers and that the electron reflectivity from the MgO/Fe interface exhibits a spin-dependent amplitude and a spin-independent phase change.  相似文献   

15.
We present first-principle calculations of electric and thermo spin transfer torques (STT) in Fe/Vacuum(Vac)/Fe magnetic tunnel junctions (MTJs). Our quantitative studies demonstrate rich bias dependence of STT and tunnel magneto resistance (TMR) behaviors with respect to the interface roughness. Thermoelectric effects in Fe/Vac/Fe MTJs is remarkable. We observe larger ZT of 6.2 in 8 ML clean Vacuum barrier, where the heavily restrained thermal conductance should be responsible for. Thermo-STT in Fe/Vac/Fe MTJs show same order as that in Fe/MgO/Fe MTJs with similar barrier thickness.  相似文献   

16.
A two-band s-d model based on the Green function method has been developed for calculating the conductivity and tunnel magnetoresistance of ferromagnet/insulator/ferromagnet structures. It is shown that s-d scattering at the interface between the ferromagnet and the insulator in Fe/Al2O3/Fe increases the tunnel magnetoresistance. The spin polarization of the current decreases thereby and even becomes negative, which is mainly due to scattering of strongly localized d electrons to the s band, followed by tunnelling through the insulator.  相似文献   

17.
In quasimagnetic tunnel junctions with a EuS spin-filter tunnel barrier between Al and Co electrodes, we observed large magnetoresistance (MR). The bias dependence shows an abrupt increase of MR ratio in high bias voltage, which is contrary to conventional magnetic tunnel junctions. This behavior can be understood as due to Fowler-Nordheim tunneling through the fully spin-polarized EuS conduction band. The I-V characteristics and bias dependence of MR calculated using tunneling theory show excellent agreement with experiment.  相似文献   

18.
吴少兵  陈实  李海  杨晓非 《物理学报》2012,61(9):97504-097504
隧道结磁阻(TMR) 传感器及巨磁阻(GMR) 传感器的1/f噪声在低频段噪声功率密度较大, 是影响其低频下分辨率和灵敏度的主要噪声形式. 本文详细介绍了近年来TMR传感器及GMR传感器1/f噪声的特点、来源、理论模型、检测方法及降噪措施等方面的研究进展, 并就隧道结磁阻传感器1/f噪声的物理模型进行了详细解释. 通过纳米模拟软件Virtual NanoLab对不同MgO厚度的Fe/MgO/Fe型磁性隧道结(MTJ) 进行了隧穿概率和TMR变化率的模拟计算, 得到保守估计与乐观估计的TMR变化率, 分别为98.1%与10324.55%, 同时通过MTJ的噪声模型分析了MgO厚度对TMR传感器噪声的影响. 制备了磁屏蔽系数大于10000的磁屏蔽筒并搭建了磁阻传感器1/f噪声的测试平台, 通过测试验证了磁屏蔽系统对环境磁场具有较好的屏蔽效果, 为噪声检测提供了稳定的磁场空间. 最后分析了TMR与GMR中各种因素对传感器噪声的影响, 提出了影响MTJ传感器1/f噪声的因素及一些降噪措施.  相似文献   

19.
To study the influence of CoFeB/MgO interface on tunneling magnetoresistance(TMR),different structures of magnetic tunnel junctions(MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy,a physical property measurement system,x-ray photoelectron spectroscopy,and transmission electron microscopy.The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface,which occurs in CoFeB/MgO/CoFeB MTJs.The inherent properties of the CoFeB/MgO/CoFeB,CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions.The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs.Based on the experimental results and theoretical analysis,it is believed that in CoFeB/MgO/CoFeB MTJs,the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR,and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation,and then increasing TMR.  相似文献   

20.
Using first-principles density functional theory, we investigate the interfacial electronic structure and magnetoelectric effect in M/BaTiO3 (M=Ni, Fe) superlattices, and find a novel type of interfacial magnetoelectric coupling mechanism in the Ni/BaTiO3 interface. This magnetoelectric effect is determined by the change of magnetic moments on Ni atoms near the interface, instead of the induced moments on interfacial Ti atoms in Fe/BaTiO3 system, which is also distinguished from the spin-polarized carriers screening mechanism. The underlying physics is the strong interface bonding and the pdσ-type magnetic interactions between Ni 3d and O 2p spins. Furthermore, there exists an extraordinary intralayer oscillation of magnetic moments within the Ni layers, which may be observed in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号