首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

2.
In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.  相似文献   

3.
We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.  相似文献   

4.
In this paper we study dynamical CPT-violation in the neutrino sector as induced by the dark energy of the universe. Specifically we consider a dark energy model where the dark energy scalar derivatively interacts with the right-handed neutrinos. This type of derivative coupling leads to cosmological CPT-violation during the evolution of the background field of the dark energy. We calculate the induced CPT-violation of left-handed neutrinos and find that the CPT-violation produced in this way is consistent with the present experimental limit and sensitive to future neutrino oscillation experiments such as the neutrino factory. PACS 95.36.+x; 14.60.St  相似文献   

5.
The masses of the three generations of charged leptons are known to completely satisfy Koide's mass relation,but the question remains of whether such a relation exists for neutrinos.In this paper,by considering the seesaw mechanism as the mechanism generating tiny neutrino masses,we show how neutrinos satisfy Koide's mass relation,on the basis of which we systematically give exact values of both left-and right-handed neutrino masses.  相似文献   

6.
In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.  相似文献   

7.
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter–antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.  相似文献   

8.
张峰  张春旭  黄明球 《物理学报》2010,59(5):3130-3135
本文基于具有整体U(1)代对称性的SU(2)L×SU(2)R×U(1)模型推导了轻子的味混合矩阵,对中微子的质量问题进行了研究.在本文的模型中,产生轻子Dirac质量的汤川耦合拉格朗日密度具有整体U(1)代对称性,所以,模型中的带电轻子质量矩阵和中微子Dirac质量矩阵是Fritzsch形式的.但是,中微子除了具有Dirac质量,一般还具有Majorana质量,在这种一般情况下, 关键词: 中微子质量 轻子味混合矩阵 左右对称模型 代对称性  相似文献   

9.
H. Ps 《Annalen der Physik》2002,11(8):551-572
The evidence for non‐vanishing neutrino masses from solar and atmospheric neutrinos provides the first solid hint towards physics beyond the standard model. A full reconstruction of the neutrino spectrum may well provide a key to the theoretical structures underlying the standard model such as supersymmetry, grand unification or extra space dimensions. In this article we discuss the impact of absolute neutrinos masses on physics beyond the standard model. We review the information obtained from neutrino oscillation data and discuss the prospects of the crucial determination of the absolute neutrino mass scale, as well as the intriguing connection with the Z‐burst model for extreme‐energy cosmic rays.  相似文献   

10.
We consider dark matter annihilation into standard model particles and show that the least detectable final states, namely, neutrinos, define an upper bound on the total cross section. Calculating the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino background, we derive a strong and general bound. This can be evaded if the annihilation products are dominantly new and truly invisible particles. Our bound is much stronger than the unitarity bound at the most interesting masses, shows that dark matter halos cannot be significantly modified by annihilations, and can be improved by a factor of 10-100 with existing neutrino experiments.  相似文献   

11.
Recent observations of a deficit of cosmic ray muon-neutrino interactions in underground detectors suggest that the muon neutrinos may have oscillated to another state. We examine possible neutrino mass and mixing patterns, and their implications for vacuum and matter effects on solar neutrinos, on neutrinos passing through the earth, and on terrastrial neutrino beams. By invoking the see-saw mechanism of neutrino mass generation, we draw inferences on closure of the universe with neutrino masses, on the number of generations, on t-quark and fourth generation masses, and on the Peccei-Quinn symmetry breaking scale. Testable predictions are suggested.  相似文献   

12.
Neutrinos stand out among the elementary particles because of their unusually small masses.Various seesaw mechanisms attempt to explain this fact.In this work,applying insights from matrix theory,we are in a position to treat variants of seesaw mechanisms in a general manner.Specifically,using Weyl's inequalities,we discuss and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light neutrinos.We find an estimate of the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos,shifted at most by the maximal strength of the coupling to the light neutrino sector.We provide analytical conditions allowing one to prescribe that precisely two out of five neutrinos are heavy.For higher-dimensional cases the inverse eigenvalue methods are used.In particular,for the CP-invariant scenarios we show that if the neutrino sector has a valid mass matrix after neglecting the light ones,i.e.if the respective mass submatrix is positive definite,then large masses are provided by matrices with large elements accumulated on the diagonal.Finally,the Davis-Kahan theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean basis.This general observation concerning neutrino mixing,together with results on the mass spectrum properties,opens directions for further neutrino physics studies using matrix analysis.  相似文献   

13.
At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m(v) < or = 0.65 eV (95% C.L.) in the standard model where the dark energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.  相似文献   

14.
The seesaw mechanism provides a simple explanation for the lightness of the known neutrinos. Under the standard assumption of a weak scale Dirac mass and a heavy sterile Majorana scale the neutrino mass is naturally suppressed below the weak scale. However, Nature may employ Dirac and Majorana scales that are much less than typically assumed, possibly even far below the weak scale. In this case the seesaw mechanism alone would not completely explain the lightness of the neutrinos. In this work we consider a warped framework that realizes this possibility by combining naturally suppressed Dirac and Majorana scales together in a mini-seesaw mechanism to generate light neutrino masses. Via the AdS/CFT correspondence the model is dual to a 4D theory with a hidden strongly coupled sector containing light composite right-handed neutrinos.  相似文献   

15.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

16.
Possible hints on neutrino masses are reviewed. They come from the deficits in the solar as well as atmospheric neutrinos and from need of a significant amount of hot component in the dark matter of the universe. The role of three generation mixing in simultaneously solving the solar and atmospheric neutrino problem is discussed. All the three hints can be reconciled if three neutrinos are almost degenerate. Models for neutrino masses and mixing implied by the above hints are briefly discussed.  相似文献   

17.
Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.  相似文献   

18.
Recent neutrino experiments suggest strong evidence of tiny neutrino masses and the lepton-flavor mixing. Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to the neutrino mass hierarchies as Type A: , Type B: , and Type C: , where is the i-th generation neutrino mass. In this paper we study the stability of the lepton-flavor mixing matrix against quantum corrections for all three types of mass hierarchy in the minimal supersymmetric Standard Model with an effective dimension-five operator which gives the Majorana masses of neutrinos. The relative sign assignments of neutrino masses in each type play crucial role for the stability against quantum corrections. We find that the lepton-flavor mixing matrix of Type A is stable against quantum corrections, and that of Type B with the same (opposite) signs of and are unstable (stable). For Type C, the lepton-flavor-mixing matrix approaches the definite unitary matrix according to the relative sign assignments of the neutrino mass eigenvalues as the effects of quantum corrections become large enough to neglect the squared mass differences of neutrinos. Received: 24 June 1999 / Revised version: 23 December 1999 / Published online: 17 March 2000  相似文献   

19.
C. Brofferio 《Pramana》2010,75(2):271-280
The renewed interest shown in these days towards neutrinoless double beta decay, a lepton number violating process which can take place only if neutrinos are Majorana particles (ν = \(\bar \nu \)) with a nonvanishing mass, is justified by the fact that the Majorana nature of neutrinos is expected in many theories beyond the Standard Model. We also now know, thanks to the neutrino oscillation experiments, that neutrinos are in fact massive, as expected in these theories and not requested in the Standard Model. Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and which mass hierarchy (normal, inverted or quasi-degenerate) is the correct one?The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted hierarchy neutrino mass scale.  相似文献   

20.
A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号