首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

2.
We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B(*) and B0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B(*) is parallel or antiparallel to B0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.  相似文献   

3.
《Nuclear Physics B》1995,455(3):505-521
The role of edge states in phenomena like the quantum Hall effect is well known, and the basic physics has a wide field-theoretic interest. In this paper we introduce a new model exhibiting quantum Hall-like features. We show how the choice of boundary conditions for a one-particle Schrödinger equation can give rise to states localized at the edge of the system. We consider both the example of a free particle and the more involved example of a particle in a magnetic field. In each case, edge states arise from a non-trivial scaling limit involving the boundary condition, and chirality of the boundary condition plays an essential role. Second quantization of these quantum mechanical systems leads to a multi-particle ground state carrying a persistent current at the edge. We show that the theory quantized with this vacuum displays an “anomaly” at the edge which is the mark of a quantized Hall conductivity in the presence of an external magnetic field. These models therefore possess characteristics which make them indistinguishable from the quantum Hall effect at macroscopic distances. We also offer interpretations for the physics of such boundary conditions which may have a bearing on the nature of the excitations in these models.  相似文献   

4.
We consider the capacity of classical information transfer for noiseless quantum channels carrying a finite average number of massive bosons and fermions. The maximum capacity is attained by transferring the Fock states generated from the grand-canonical ensemble. Interestingly, the channel capacity for a Bose gas indicates the onset of Bose-Einstein condensation, by changing its qualitative behavior at the criticality, while for a channel carrying weakly attractive fermions, it exhibits the signatures of Bardeen-Cooper-Schrieffer transition. We also show that, for noninteracting particles, fermions are better carriers of information than bosons.  相似文献   

5.
《Physics letters. A》2020,384(28):126739
I introduce an algorithm to detect one-way quantum information between two interacting quantum systems, i.e. the direction and orientation of the information transfer in arbitrary quantum dynamics. I then build an information-theoretic quantifier of one-way information which satisfies a set of desirable axioms. In particular, it correctly evaluates whether correlation implies one-way quantum information, and when the latter is transferred between uncorrelated systems. In the classical scenario, the quantity measures information transfer between random variables. I also generalize the method to identify and rank concurrent sources of quantum information flow in many-body dynamics, enabling to reconstruct causal patterns in complex networks.  相似文献   

6.
Entanglement is the crucial resource for different quantum information processing tasks. While conventional studies focus on the entanglement of bipartite or multipartite quantum states, recent works have extended the scenario to the entanglement of quantum channels, an operational quantification of the channel entanglement manipulation capability. Based on the recently proposed channel entanglement resource framework, here we study a further task of resource detection—witnessing entanglement of quantum channels. We first introduce the general framework and show how channel entanglement detection is related to the Choi state of the channel, enabling channel entanglement detection via conventional state entanglement detection methods. We also consider entanglement of multipartite quantum channels and use the stabilizer formalism to construct entanglement witnesses for circuits consisting of controlled-Z gates. We study the effectiveness of the proposed detection methods and compare their performance for several typical channels. Our work paves the way for systematic theoretical studies of channel entanglement and practical benchmarking of noisy intermediate scaled quantum devices.  相似文献   

7.
程留永  郑黎娜  吴瑞祥  王洪福  张寿 《中国物理 B》2022,31(2):20305-020305
We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.  相似文献   

8.
We describe a technique to create long-lived quantum memory for quantum bits in mesoscopic systems. Specifically we show that electronic spin coherence can be reversibly mapped onto the collective state of the surrounding nuclei. The coherent transfer can be efficient and fast and it can be used, when combined with standard resonance techniques, to reversibly store coherent superpositions on the time scale of seconds. This method can also allow for "engineering" entangled states of nuclear ensembles and efficiently manipulating the stored states. We investigate the feasibility of this method through a detailed analysis of the coherence properties of the system.  相似文献   

9.
We describe two quantum channels that individually cannot send any classical information without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero-capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.  相似文献   

10.
陈俊  於亚飞  张智明 《物理学报》2015,64(16):160305-160305
研究了量子态在一条均匀耦合的反铁磁自旋链中传输时, 信道中自旋激发数变化对其传输性质的影响. 利用信息流方法分析输出端粒子的算符演化动力学, 获得了量子态传输的平均保真度与信道自旋初态之间的关系. 结果表明, 平均保真度的大小只依赖于信道中自旋激发数的奇偶性. 通过比较在奇偶激发信道中获得的最大平均保真度, 构建了优化信道来提升量子态在自旋链中的传输质量. 进一步分析了纠缠在激发信道中的传输情况, 发现纠缠的传输质量不仅和信道中自旋激发的具体个数有关, 还取决于激发自旋的初始排列. 特别地, 当信道中自旋无激发或全部激发时, 纠缠传输的大小和持续时间都优于其他的激发信道. 上述研究结果有助于在实际系统中搭建适合量子态和纠缠传输的量子信道.  相似文献   

11.
We study dynamics of electrons in a magnetic field using a network model with two channels per link with random mixing, while the intrachannel potential is periodic (non-random); the channels represent two spin states. We consider channel mixing as function of the energy separation of the two extended states, and show that the phase diagram is different from the standard quantum Hall diagram for random intrachannel potential.  相似文献   

12.
利用三粒子纠缠态建立量子隐形传态网络的探讨   总被引:10,自引:0,他引:10       下载免费PDF全文
周小清  邬云文 《物理学报》2007,56(4):1881-1887
利用W态纠缠源可以产生三纠缠粒子,用这些相互纠缠的粒子作为量子信道,再辅以经典信道传送Bell基联合测量信息和von Neumann测量信息,便可实现量子隐形传态网络.基于上述思想,研究了三纠缠粒子量子隐形传态网络的物理基础,得到了基于三粒子W 关键词: 量子通信 量子隐形传态 W态')" href="#">W态  相似文献   

13.
We investigate the effect of an anisotropic depolarizing channel on the classical transmission of quantum entangled states. We calculate numerically mutual information between honest parts as a function of the degree of anisotropy of the depolarizing channel. In contrast to the case of isotropic channels, we found that the mutual information depends on both the degree of anisotropy and the degree of entanglement. It increases with increase in the degree of entanglement for a quantum channel with sufficiently large depolarizing anisotropy and decreases with increase in the entanglement.  相似文献   

14.
By adopting the concept of fidelity, we investigated efficiency of quantum state transfer with the XX chain as the quantum channel. Different from the previous works, we concentrated on effects of spin and magnetic impurity on fidelity of quantum state transfer. Our results revealed that the spin impurity cannot prevent one from implementing perfect transfer of an arbitrary one-qubit pure state across the spin channel, however, the presence of magnetic impurity or both spin and magnetic impurities may destroy the otherwise perfect spin channels.  相似文献   

15.
We describe a method for coupling disjoint quantum bits (qubits) in different local processing nodes of a distributed node quantum information processor. An effective channel for information transfer between nodes is obtained by moving the system into an interaction frame where all pairs of cross-node qubits are effectively coupled via an exchange interaction between actuator elements of each node. All control is achieved via actuator-only modulation, leading to fast implementations of a universal set of internode quantum gates. The method is expected to be nearly independent of actuator decoherence and may be made insensitive to experimental variations of system parameters by appropriate design of control sequences. We show, in particular, how the induced cross-node coupling channel may be used to swap the complete quantum states of the local processors in parallel.  相似文献   

16.
We consider the transfer of classical and quantum information through a memory amplitude damping channel. Such a quantum channel is modeled as a damped harmonic oscillator, the interaction between the information carriers — a train of qubits — and the oscillator being of the Jaynes-Cummings kind. We prove that this memory channel is forgetful, so that quantum coding theorems hold for its capacities. We analyze entropic quantities relative to two uses of this channel. We show that memory effects improve the channel aptitude to transmit both classical and quantum information, and we investigate the mechanism by which memory acts in changing the channel transmission properties.  相似文献   

17.
The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.  相似文献   

18.
量子通信是量子科学技术的一个重要研究领域,是一种利用量子力学原理,能够在合法各方之间安全地传输私密信息的通信方式.基于单光子的确定性安全量子通信通常需要在发送方和接收方之间来回两次传输单光子态,并利用局域幺正变换加载信息.本文提出了一种单向传输单光子态的确定性安全量子通信方案.发送方利用单光子的极化和time-bin两自由度构成的两组共轭基矢量来编码经典逻辑比特.接收方通过设计合适的测量装置可以在发送方辅助下确定性地获取比特信息并感知窃听,从而实现信息的确定性安全传输.另外,我们的协议使用线性光学元件和单光子探测器,可以在当前的量子通信装置上实现.  相似文献   

19.
Entanglement irreversibility from quantum discord and quantum deficit   总被引:1,自引:0,他引:1  
We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.  相似文献   

20.
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号