首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New on-line analytical system coupling thin layer chromatography (TLC) and high selective identification unit-time of flight secondary ion mass spectrometry (TOF-SIMS) is introduced in this article. Chromatographic mixture separation and analyte surface deposition followed with surface TOF-SIMS analysis on-line allows to identify the analytes at trace and ultratrace levels. The selected analytes with different detectability and identification possibility were analysed in this hyphenated unit (Methyl Red indicator, Terpinolen and Giberrelic acid). Here, the chromatographic thin layer plays a universal role: separation unit, analyte depositing surface and TOF-SIMS interface, finally. Two depositing substrates and TOF-SIMS compatible interfaces were tested in above-mentioned interfacing unit: modified aluminium backed chromatographic thin layer and monolithic silica thin layer. The sets of positive and negative ions TOF-SIMS spectra obtained from different SIMS modes of analysis were used for analyte identification purposes. SIMS enables analyte detection with high mass resolution at the concentration level that is not achieved by other methods.  相似文献   

2.
Chemometric data evaluation methods for time-of-flight secondary ion mass spectrometry (TOF-SIMS) have been tested for the characterization and classification of minerals. Potential applications of these methods include the expected data from cometary material to be measured by the COSIMA instrument onboard the ESA mission ROSETTA in the year 2014. Samples of the minerals serpentine, enstatite, olivine, and talc have been used as proxies for minerals existing in extraterrestrial matter. High mass resolution TOF-SIMS data allow the selection of peaks from inorganic ions relevant for minerals. Multivariate cluster analysis of peak intensity data by principal components analysis and the new method CORICO showed a good separation of the mineral classes. Classification by k nearest-neighbor classification (KNN) or binary decision trees (CART method) results in more than 90% correct class assignments in a leave-one-out cross validation.  相似文献   

3.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides a method of elemental analysis that can distinguish among automotive paint samples of the same or nearly the same color. TOF-SIMS survey spectra were employed to determine the relative abundances of elements in the surface layers of the paint chips. The depth profile of paint samples permitted the analysis of small paint chips, the reproducible results for specific elements, and the identification of each car paint. Seventy-three samples of blue, red, white, and silver automobile paints from the major manufacturers in Korea were investigated using high resolution TOF-SIMS technique. It was found that paints of the same color produced by different manufacturers could be distinguished by this technique. TOF-SIMS is a reliable, nondestructive, and small area analyzing method for characterization of the elemental composition of automotive paint chips.  相似文献   

4.
We contribute to the rapidly emerging interest in the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for chemical analysis of biological materials by presenting a careful TOF-SIMS investigation of structurally different SiO2-supported phospholipid assemblies. Freeze-dried supported 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (POPC) bilayers, Langmuir-Blodgett POPC monolayers, and disordered thick POPC films were investigated. Compared with the two latter structures, the supported bilayer showed a strong (5-10 times) enhancement in the yield of both the molecular and the dimer ion peaks of POPC, suggesting that the molecular peak may be used as a sensitive indicator for changes in the membrane structure and, in particular, an indicator for the presence of bilayer structures in, e.g., cell and tissue samples. The detection efficiency and the useful lateral resolution indicate that a lateral resolution of around 100 nm can be obtained on all structures by imaging the phosphocholine ion at 184 u using Bi3+ primary ions. For the chemically specific molecular peak at 760 u, the measured detection efficiencies correspond to a useful lateral resolution of around 2 microm for the bilayer structure. The results are discussed in relation to recent dynamic SIMS (nano-SIMS) analysis of freeze-dried supported lipid bilayers, displaying similar or higher lateral resolution, but which in contrast to TOF-SIMS requires isotopic labeling of the analyzed lipids.  相似文献   

5.
Significant enhancements in ion yields in time-of-flight secondary ion mass spectrometry (TOF-SIMS) are observed when water-soluble analytes are mixed with a polyelectrolyte, e.g., poly(diallyldimethylammonium chloride) or poly(sodium 4-styrenesulfonate), and then deposited in the layer-by-layer method on a surface. This previously unobserved effect is demonstrated for 5-chloro-8-methoxyquinoline appended diaza-18-crown-6, 5-(2-aminoethoxy)methyl-5-chloro-8-methoxyquinoline appended diaza-18-crown-6, acridine, 9-anthracenecarboxylic acid, and ferrocenecarboxylic acid. By optical ellipsometry film thicknesses range from ca. 5-20 angstroms. X-ray photoelectron spectroscopy shows significantly less analyte in the polyelectrolyte-analyte films than in the neat analytes. However, TOF-SIMS generally shows significant enhancements in ion yields from the polyelectrolyte films compared with either the neat compounds or the compounds solubilized with acid or base and then dried on a surface. These significant enhancements in ion yields also appear to extend to analyte fragments and cationized molecular species. Some enhancement is also observed for dried droplets of analytes mixed with a polyelectrolyte on surfaces.  相似文献   

6.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using liquid metal ion guns (LMIGs) is now sensitive enough to produce molecular-ion images directly from biological tissue samples. Primary cluster ions strike a spot on the sample to produce a mass spectrum. An image of this sample is achieved by rastering the irradiated point over the sample surface. The use of secondary ion mass spectrometry for mapping biological tissue surfaces provides unique analytical capabilities; in particular, it enables in a single acquisition a large variety of biological compounds to be localised on a micrometer scale and scrutinised for colocalisations. Without any treatment of the sample, this method is fully compatible with subsequent and complementary analyses like fluorescence microscopy, histochemical staining, or even matrix-assisted laser desorption/ionisation imaging. Basic physical concepts, required instrumentation (ion source and mass analyzer), sample preparation methods, image acquisition, image processing, and emerging biological applications will be described and discussed.  相似文献   

7.
The time-of-flight secondary ion mass spectrometry (TOF-SIMS) has emerged as a powerful tool for the unswerving detection of biomolecules, in particular, proteins and peptides. To date, there is very little information available on the direct determination of trimethyl/triethyl amines using TOF-SIMS. One major hurdle in this regard is an ultrahigh vacuum system, usually needed in TOF-SIMS, which hampers its usability to trimethyl/triethyl amines owing to their high evaporation rate. We designed an efficient and sensitive protocol for rapid identification and sensitive determination of tertiaryalkyl amines using TOF-SIMS. The amines were derivatized by reaction with 1,4-butane sultone and sulphuric acid sequentially to afford the corresponding sulphonic acidic ionic liquids (ILs). The TOF-SIMS analysis of these task-specific ILs (TSILs) was carried out in both positive and negative polarity. The positive ion mass spectra of TSILs showed sharp fragmented peaks for tertiaryalkyl amines at typical level and up to 10 ppm. The possible mechanism for different fragmentation pathways in positive polarity was discussed.  相似文献   

8.
A novel sample-pretreatment method for time-of-flight secondary ion mass spectrometry (TOF-SIMS) was developed using supercritical fluid extraction (SFE). In SFE, the extraction efficiency of a certain organic matter is controlled by the pressure and temperature of supercritical CO2. Two-step SFE (1st step at 10 Mpa, 40 degrees C; 2nd step at 30 MPa, 120 degrees C) was applied to diesel exhaust particles containing many kinds of n-alkanes and aromatic species. n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) were extracted in the 1st and 2nd steps, respectively. This selectivity was utilized for the sample preparation of TOF-SIMS analysis. Diesel exhaust particles after the 1st step of extraction were analyzed with TOF-SIMS, aiming at PAHs as analytical targets. The obtained spectrum was simplified, and mass peaks of individual PAHs were easily assigned, because unwanted compounds, like n-alkanes, were selectively removed by SFE. Furthermore, a simple calculation elucidated the outline of the spectrum.  相似文献   

9.
Understanding the influence of molecular environment on phospholipids is important in time-of-flight secondary ion mass spectrometry (TOF-SIMS) studies of complex systems such as cellular membranes. Varying the molecular environment of model membrane Langmuir-Blodgett (LB) films is shown to affect the TOF-SIMS signal of the phospholipids in the films. The molecular environment of a LB film of dipalmitoylphosphatidylcholine (DPPC) is changed by varying the film density, varying the sample substrate, and the addition of cholesterol. An increase in film density results in a decrease in the headgroup fragment ion signal at a mass-to-charge ratio of 184 (phosphocholine). Varying the sample substrate increases the secondary ion yield of phosphocholine as does the addition of proton-donating molecules such as cholesterol to the DPPC LB film. Switching from a model system of DPPC and cholesterol to one of dipalmitoylphosphatidylethanolamine (DPPE) and cholesterol demonstrates the ability of cholesterol to also mask the phospholipid headgroup ion signal. TOF-SIMS studies of simplistic phospholipid LB model membrane systems demonstrate the potential use of these systems in TOF-SIMS analysis of cells.  相似文献   

10.
Implant healing into bone tissue is a process where the mature bone grows towards and eventually fuses with the implant. In this study we investigated implant healing during 4 weeks with focus on the implant-tissue interface. Our main interest was to study the mineralization process around the implant. Titanium discs were implanted in rat tibia for 2 and 4 weeks. After implantation cross sections of bone and implant were made using a low-speed saw equipped with a diamond wafering blade. One section from each sample was stained with basic fuchsin and micrographed by light microscopy (LM). The other section was analyzed with imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) using a Bi(3)(+) cluster ion source. This ion source has recently been shown to enable identification of high-mass hydroxyapatite (HA) fragment ions (m/z 291-653) in bone samples. The LM images were used to identify areas suitable for TOF-SIMS analysis. Three areas were selected for mass spectral analysis, corresponding to interface region, bone and soft tissue, from which positive ion spectra were recorded. In the areas identified as bone, high-mass HA fragments ions were found after both 2 and 4 weeks. In the soft tissue area, no high-mass ions were found after 4 weeks. However, after 2 weeks HA-related ions were identified in mineralized spots in areas defined as soft tissue. After 4 but not after 2 weeks, high-mass HA fragment ions were found in the interface region. In conclusion, differences were observed regarding mineralization between 2 and 4 weeks of implantation and between different regions surrounding the implants. Imaging TOF-SIMS analysis using a Bi(3)(+) cluster as ion source enables identification of high-mass HA fragment ions at implant-tissue interfaces in bone. This technique might therefore be useful for biocompatibility assessment and for studying the mineralization process at implant surfaces.  相似文献   

11.
Silicon grafted monodisperse poly(ethylene glycol) (PEG) silanes with various PEG chain lengths and mixtures of these were systematically analyzed with static time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mass spectra show differences in the various relative signal intensities, an observation that was used to elucidate important aspects of the grafting process. The relationship between PEG-silane fragment ion abundances and Si(+) ion abundances were used to (i) qualitatively describe layer thicknesses of grafted mixtures of PEG-silanes on silicon, (ii) construct a calibration curve from which PEG chain length (or molecular mass) can be determined and (iii) quantitatively determine surface mixture compositions of grafted monodisperse PEG-silanes of different chain lengths (3, 7 and 11 PEG units). The results suggest that discrimination does take place in the adsorption process. The PEG-silane with the shorter PEG chain is discriminated for mixtures containing PEG3-silane, whereas the PEG-silane with the longer PEG chain is discriminated in PEG7/PEG11-silane mixtures. The origin of this difference in adsorption behavior is not well understood. Aspects of the grafting process and the TOF-SIMS analyses are discussed.  相似文献   

12.
Fluoropolymer plasma coatings have been investigated for application as stent coatings due to their chemical stability, conformability, and hydrophobic properties. The challenge resides in the capacity for these coatings to remain adherent, stable, and cohesive after the in vivo stent expansion, which can generate local plastic deformation of up to 25%. Plasma-coated samples have been prepared by a multistep process on 316L stainless steel substrates, and some coated samples were plastically deformed to mimic a stent expansion. Analyses were then performed by X-ray photoelectron spectroscopy (XPS), X-ray photoelectron emission microscopy (X-PEEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to determine the chemical and physical effects of such a deformation on both the coating and the interfacial region. While XPS analyses always showed a continuous coating with no significant effect of the deformation, TOF-SIMS and near-edge X-ray absorption fine structure (derived from X-PEEM) data indicated the presence of a certain density of porosity and pinholes in all coatings as well as sparse fissures and molecular fragmentation in the deformed ones. The smallness of the area fraction affected by the defects and the subtlety of the chemical changes could only be evidenced through the higher chemical sensitivity of these latter techniques.  相似文献   

13.
The capabilities of time of flight secondary ion mass spectrometry (TOF-SIMS) have been recently greatly improved with the arrival in this field of polyatomic ion sources. This technique is now able to map at the micron scale intact organic molecules in a range of a thousand Daltons or more, at the surface of tissue samples. Nevertheless, this remains a surface analysis technique, and three-dimensional information on the molecular composition of the sample could not be obtained due to the damage undergone by the organic molecules during their irradiation. The situation changed slightly with the low damage and low penetration depth of the C60 fullerene ion beams. Recent promising studies have shown the possibility of organic molecular depth profiling using this kind of beams onto model samples. This possibility has been tried out directly onto a rat brain tissue section, which is the most commonly used biological tissue model in TOF-SIMS imaging method developments. The tissue surface has been sputtered with a 10 keV energy fullerene ion beam, and surface analyses were done with a 25 keV Bi3+ ion beam at regular time intervals. The total depth which was analysed was more than two microns, with total primary ion doses of more than 1016 ions cm−2. Although not in contradiction with results previously published but with much lower doses, it is found that the molecular damage remains too large, thus making molecular imaging very difficult. In addition, most of the lipids, which are usually the main observable molecules in TOF-SIMS, are concentrated close to the sample surface in the first hundreds of nanometers.  相似文献   

14.
A protocol for the preparation of polymeric samples for time-of-flight matrix-assisted laser desorption ionization mass spectrometry (TOF-MALDI-MS) analysis was developed. Dithranol was identified as a good matrix for polystyrene (PS), and the addition of silver for cationization of molecules was determined to be necessary. Based on this preparative method, low molecular weight samples of other polymers [polyisoprene, polybutadiene, poly(ethylene oxide), poly(methyl methacrylate), and polydimethylsiloxane] were analyzed with molecular weights up to 49 ku. The effects of laser intensity were determined to influence the molecular weight distribution of intact oligomers, most significantly for low molecular weight polymers. Linear and reflectron modes of analysis were evaluated; better signal intensity and resolution were obtained in the reflectron mode. The TOF-MALDI-MS measurements are compared with time-of-flight secondary ion mass spectrometry (TOF-SIMS) and gel permeation chromatography (GPC) for the same polymers. The M n values calculated by TOF-MALDI-MS consistently are higher than values calculated by TOF-SIMS for all classes of polymers with molecular weights up to 8 ku. The molecular weights of the PS calculated from TOF-MALDI-MS are in good agreement with GPC (±10%). The composition of the terminal group on a polymer chain may affect the ion yields. The ion yields of intact oligomers were evaluated as a function of end group composition for both TOF-MALDI-MS and TOF-SIMS. The slight disparity of results between TOF-SIMS and TOF-MALDI-MS for the perfluoroalkyl-terminated PS suggests that the oligomers are desorbed preferentially from the surface in the TOF-SIMS analysis, rather than having an increased ionization probability.  相似文献   

15.
A series of 16 polyarylates, with well-controlled and systematically varying chemistry, has been characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The polymers are structurally identical except for the incremental additions of C2H4 units to the backbone and sidechain. From the spectra, peaks characteristic of all polyarylates are identified. Furthermore, evaluation of the spectra and identification of unique signals allow classification of the polyarylates according to sidechain and backbone chemistry.  相似文献   

16.
PET (poly(ethylene-terephthalate)) samples provided by different suppliers were investigated with the surface-sensitive methods as electron spectroscopy for chemical analysis (ESCA) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Analysis by means of ESCA provides chemical information from a near-surface region of roughly 6 nm. Specific ESCA data on chemical shifts and on the ratio between oxygen and carbon are compared with corresponding values expected for the molecular structure of bulk PET. In addition, direct chemical information on the molecular structure at the PET surface (essentially from the first two monolayers) has been obtained by TOF-SIMS. Especially, positive and negative TOF-SIMS mass spectra were analyzed in detail and assigned with respect to characteristic polymer fragment ions. Several polymer additives as well as some contaminations present at the PET surfaces could be identified with TOF-SIMS. Dependent on the PET supplier, antioxidants and lubricants such as Irgafos 168, octylstearate, octylpalmitate, octylarachidate and PDMS (polydimethylsiloxane) found at the sample surfaces give typical positive and negative ion fragments.  相似文献   

17.
 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate thin films of poly(styrene), poly(vinyl napthalene), and poly(4-chlorostyrene) on clean silver substrate surfaces. The mass spectra were taken in the high molecular mass range (m/z>1000 amu). The different fragmentation patterns found are discussed in detail. Obviously, the fragmentation mechanisms are influenced by the electron density of the aryl rings stabilizing or destabilizing the formed cations. Received: 10 April 1996 / Revised: 12 June 1996/Accepted: 14 June 1996  相似文献   

18.
Deca-bromo-diphenyl ether (DBDE) is one of the most efficient brominated flame retardant (BFR) available on the market. We recently demonstrated that when administered to female rat by oral route, DBDE is efficiently absorbed, with the highest residual concentrations found in two endocrine glands, namely the adrenal glands and the ovaries. Tinie-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging, a technique usually used for the study of endogenous compounds, was applied for the first time to a persistent organic pollutant, allowing to detect and to precisely localize DBDE residues in these two target tissues. The detection of the bromide ion (81Br isotope) by TOF-SIMS mass spectrometry imaging allowed us to demonstrate a marked cortical tropism of DBDE residues for the adrenal glands in female rats dosed per os 2 mg · kg−1 DBDE, daily, over 96 h. In ovaries, DBDE residues were found to be concentrated in spots corresponding to part of the corpora lutea. Hepatic residues of DBDE were found to be homogeneously distributed. Due to the intrinsic toxicity of DBDE, its accumulation in the adrenal glands and the ovaries may be connected to the mechanisms of actions by which DBDE could trigger endocrine disruption in mammals.  相似文献   

19.
Benzalkonium (BAK) chloride is the most commonly used preservative in eye drops. It is generally composed of benzyldimethyldodecylammonium C12 and benzyldimethyltetradecylammonium C14 and is supposed to increase penetration of active compounds. However, numerous studies have reported its toxic effect to ocular surface especially in long-term treatments like against glaucoma, a sight-threatening disease. Albino rabbits were treated with a hyperosmolar solution and a high concentration of BAK solution for 1 month. Enucleated eyes were cryo-sectioned and analysed by mass spectrometry. Mass spectrometry imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to characterize the spatial distribution and to determine the relative quantity of BAK at the surface of rabbit eye sections. Liquid chromatography coupled with mass spectrometry (LC-MS) using a hybrid linear ion trap-Orbitrap® mass spectrometer was used to obtain relative quantification of BAK at the sample surface. TOF-SIMS images of BAK ions indicated a distribution at the ocular surface and in deeper structures. Didecyldimethylammonium (DDMAC), which is used in hospitals as a substitute for BAK, was also detected and showed an accumulation around the eyes. After extraction with acetonitrile and chromatographic separation using a Gemini C18 column and an original elution gradient, the relative quantities of BAK and DDMAC present in the whole eye section surface were determined. This LC-MS method was validated in terms of limits of quantification, linearity, repeatability and reproducibility and its feasibility was evaluated in surgically obtained human samples. Specimens of iris, lens capsule or trabecular meshwork were found with significant levels of BAK and DDMAC, thus confirming the penetration of BAK in deep ocular structures, with potential deleterious effects induced by this cytotoxic compound. The analytical method developed here could therefore be of primary interest in the field of pharmaco-toxicology in order to localise, identify and quantify drugs or xenobiotic compounds present at biological sample surfaces.
Figure
Mass spectrometry image (TOF-SIMS) of rabbit eye conjunctiva treated with benzalkonium chloride  相似文献   

20.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an important tool for the analysis of bone minerals at implant surfaces. Most studies have been performed with monoatomic primary ion sources such as Ga(+) with poor secondary molecular ion production efficiency and only elemental distributions and minor fragments of bone minerals have been reported. By using cluster ion sources, such as Au(1-3) (+) and Bi(1-3) (+), identification of larger hydroxyapatite species at m/z 485, 541, 597 and 653, identified as Ca(5)P(3)O(12), Ca(6)P(3)O(13), Ca(7)P(3)O(14) and Ca(8)P(3)O(15), respectively, became possible. The ions appear to be fragments of the hydroxyapatite unit cell Ca(10)(PO(4))(6)(OH)(2). Each ion in the series is separated by 55.9 m/z units, corresponding to CaO, and this separation might reflect the columnar nature of the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号