首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 339 毫秒
1.
通过超声剥离法制备二硫化钨(WS2)纳米片,将纳米片和红磷(P)混合,用氩气(Ar)等离子体对混合物进行处理,制备了P掺杂缺陷WS2纳米片。对制备的材料进行电催化析氢反应(hydrogen evolution reaction,HER)测试,结果表明P掺杂的缺陷WS2纳米片相对于缺陷WS2纳米片和WS2纳米片表现出优越的HER催化活性(较小的过电位和Tafel斜率、优异的稳定性)。密度泛函理论计算结果表明,在WS2结构中P原子和缺陷结构改善了其电子结构,使其具有更加合适的H+吸附能垒和H2生成动力学性能,从而提高催化活性。  相似文献   

2.
通过超声剥离法制备二硫化钨(WS2)纳米片,将纳米片和红磷(P)混合,用氩气(Ar)等离子体对混合物进行处理,制备了P掺杂缺陷WS2纳米片。对制备的材料进行电催化析氢(hydrogen evolution reaction,HER)测试,结果表明P掺杂的缺陷WS2纳米片相对于缺陷WS2纳米片和WS2纳米片表现出优越的HER催化活性(较小的过电位和Tafel斜率,优异的稳定性)。密度泛函理论计算结果表明,在WS2结构中P原子和缺陷结构改善了其电子结构,使其具有更加合适的H+吸附能垒和H2生成动力学性能,从而提高催化活性。  相似文献   

3.
球磨-溶剂热诱导法合成WS2纳米棒及其摩擦性能   总被引:2,自引:0,他引:2  
采用行星式高能球磨机,将WS2与S粉末混合球磨,得到纳米片状结构的前驱体,然后添加分散剂聚乙二醇(PEG)用溶剂热诱导的方法使纳米片状前驱体发生结构转变,制备了棒状结构的WS2纳米材料。用XRD、SEM、TEM等方法对WS2纳米棒进行了形貌和结构表征,并对其作为润滑油添加剂的摩擦性能进行了初步的研究。  相似文献   

4.
以六氯化钨、硫代乙酰胺、氧化石墨烯为原料,采用一步水热法合成了二维的二硫化钨/石墨烯(WS2/RGO)复合材料。水热合成的WS2/RGO具有薄层的二维结构,且由于石墨烯的存在,WS2以较少的层数形成薄片状生长在石墨烯的表面。尝试将这种非Pt类材料用于电催化氧化原反应,测试结果表明,WS2在碱性条件下氧还原活性非常低,但是复合RGO形成WS2/RGO复合材料后,电催化氧化原性能有了极大的提高,其起始电位为-0.17 V(vs SCE),转移电子数为3.7,极限电流密度为2.5 mA·cm-2,同时其具有较好的抗甲醇性能和循环稳定性。这是因为WS2/RGO复合材料的二维结构具有更高的电子传输速率,同时硫化钨和石墨烯可以发挥协同催化作用。这种新型的二硫化钨/石墨烯(WS2/RGO)复合材料作为非贵金属催化剂表现出良好的氧还原性能,在燃料电池上具有较好的应用前景。  相似文献   

5.
为研究PVP含量对CZTS颗粒形貌以及分散性的影响,本文采用溶剂热法,以CuCl2·2H2O、Zn(Ac)2·2H2O、SnCl4·5H2O作金属源,硫脲作硫源,乙二醇为溶剂,在体系中加入不同含量的PVP,成功制备了CZTS微球。通过XRD、Raman、SEM、TEM、UV-Vis等方法检测分析CZTS纳米微球的物相、结构、形貌以及光学性能。结果表明:所得CZTS纳米颗粒具有锌黄锡矿结构;当体系中PVP含量为0.2g时,颗粒分散性较好,制备的颗粒形貌为表面嵌有纳米薄片的微球,纳米片较在体系中加入0.1gPVP更致密;光学带隙约为1.47eV,与太阳能电池所需的最佳带隙接近。最后,对表面嵌有纳米薄片的CZTS微球可能的形成机理进行了推测。  相似文献   

6.
以Co(NO32·6H2O、Na2WO4·2H2O为主要原料,去离子水为溶剂,利用水热法在不同条件下制备了一系列的纳米CoWO4,用XRD、TEM和比表面分析仪对产品的物相、形貌和比表面积进行了表征。较系统地探讨了水热条件(反应混合物pH值、反应时间、反应温度等)对产物物相和形貌的影响,并研究了不同形貌产品对甲醛、乙醇、氨气、苯和丙酮等的敏感性能。结果表明:水热条件对产品的物相和形貌有影响,在不同水热条件下,可成功制备CoWO4纳米颗粒、纳米立方体及纳米棒;以纳米颗粒、纳米立方体及纳米棒样品制成的气敏元件对被试气体有不同程度的响应,其中以纳米颗粒为基的元件在210℃对1000μL·L-1NH3灵敏度为3.3。  相似文献   

7.
利用柠檬酸三钠还原硝酸银制备了银纳米颗粒(AgNPs), 然后通过氨水水解正硅酸乙酯(TEOS)的方法, 在AgNPs上沉积SiO2, 制备出以Ag为核, SiO2为壳的复合纳米颗粒(Ag@SiO2). 调节TEOS用量, 可以控制SiO2层的厚度. 根据AgNPs的局域表面等离激元共振(LSPR)效应, 将制得的Ag@SiO2颗粒用于H2O2的检测, 检测下限为1 μmol/L, 并可以通过控制SiO2层的厚度方便地调节Ag@SiO2颗粒与H2O2反应的速率. 与传统方法相比, 具有简单、快速、成本低的优点. 分别运用TEM、紫外-可见分光光度计对反应前后Ag@SiO2颗粒形貌及反应过程中其LSPR吸收的变化进行了表征.  相似文献   

8.
基于SnO2为修饰层的Au-Pt / SnO2 / Au复合电极研究   总被引:1,自引:0,他引:1  
用真空镀膜法在Au电极上沉积SnO2薄膜,在HAuCl4和H2PtCl4的混合溶液中利用直接还原法,将Au-Pt双金属纳米颗粒组装在SnO2 / Au电极上,得到Au-Pt / SnO2 / Au复合电极。采用SEM、TEM、XPS及CV曲线测定对Au-Pt / SnO2 / Au复合电极进行了表征。结果表明:复合电极上双金属纳米颗粒分布均匀,粒子粒径约为25 nm左右。SnO2作为修饰层以配位键与双金属纳米粒子结合。Au-Pt / SnO2 / Au复合电极具有良好对甲醇氧化的电化学性能。  相似文献   

9.
在量子化学对SiH与H2O和H2S反应计算的基础上,运用统计热力学和Wigner校正的Eyring过渡态理论,计算了上述两反应在200~2000 K温度范围内的热力学函数、平衡常数、频率因子A和速率常数随温度的变化。计算结果表明,两反应在低温下具有热力学优势,而在高温下具有动力学优势。比较两反应的计算结果发现,在相同的温度下,SiH与H2O反应比SiH与H2S反应放热较多,但速率常数却较小。SiH与H2O反应和前文报道的SiH与HF反应的比较表明,SiH与H2O反应放热较少,而且在相同温度下,速率常数也较小。  相似文献   

10.
Cu-Sn-P-LiMn2O4纳米复合材料镀层的XPS和AES研究   总被引:3,自引:0,他引:3  
采用化学复合镀技术,在Q235碳钢片表面制备了Cu-Sn-P-LiMn2O4纳米复合材料镀层。用扫描电子显微镜(SEM)观察外貌;称重法测定厚度;通过5% NaCl溶液、1% H2S气体加速腐蚀试验、抗粘性试验及室温氧化试验等多种手段测定其性能。用X-射线光电子能谱(XPS)及俄歇电子能谱(AES)测定其价态及组成。结果表明:Cu-Sn-P-LiMn2O4纳米复合材料镀层的性  相似文献   

11.
A novel biomimetic surface modification method utilizing mussel-inspired chemistry was used to prepare tungsten disulfide (WS2) nanocomposites, which enhanced the dispersion stability and tribological performance of WS2 in polyalkylene glycol (PAG). Herein, WS2-polydopamine-methoxypolyethylene glycol amine (WS2-PDA-MPGA) was first synthesized via mussel-inspired chemistry and used as a lubricant additive in PAG. After modification, the dispersion stability of WS2 nanosheets in PAG was obviously improved. Moreover, the tribological performance of WS2-PDA-MPGA in PAG at high temperature was evaluated by the oscillating reciprocating tribometer. Compared to pure PAG, the lubricant composition containing WS2-PDA-MPGA exhibited excellent performance in friction reduction and anti-wear properties at high temperature. The optimal tribological performance could be obtained when the percentage of additives was 0.9?wt%. The tribological results indicate that WS2-PDA-MPGA, with its good dispersion stability, has better friction reduction and anti-wear properties than does WS2 in PAG base oil. The chemical composition analysis of the wear surface indicated that a stable protective film had been formed by physical adsorption and tribo-chemical reactions. Therefore, the surface modification strategy is an effective way to improve the dispersion stability of WS2 in PAG, which can be expanded application of WS2 in the tribological field.  相似文献   

12.
将钼粉与升华硫和硒粉的混合粉末按一定化学计量比混合,通过固相反应法成功制备出了均匀的片状纳米颗粒。分别使用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)以及透射电子显微镜(TEM)对该纳米粉体进行结构表征和分析,发现该粉体为MoS2/MoS1.5Se0.5混合晶相,晶粒尺寸在300~600 nm,厚度约为5 nm的片状结构。将该MoS2/MoS1.5Se0.5纳米片作为润滑油添加剂添加到基础油中,使用UMT-2型摩擦磨损试验机对其摩擦学性能进行测试,并对摩擦机理进行了解释,结果表明MoS2/MoS1.5Se0.5纳米片作为润滑油添加剂具有良好的减摩抗磨性能。  相似文献   

13.
Summary. Four new organic ammonium tetrathiotungstates (NMeenH2)[WS4] (1), (N,N′-dm-1,3-pnH2)[WS4] (2), (1,4-bnH2)[WS4] (3), and (mipaH)2[WS4] (4), (NMeenH2 = N-methylethylenediammonium, N,N′-dm-1,3-pnH2 = N,N′-dimethyl-1,3-propanediammonium, 1,4-bnH2 = 1,4-butanediammonium, and mipaH = monoisopropylammonium) were synthesized by the base promoted cation exchange reaction and characterized by elemental analysis, infrared, Raman, UV-Vis and 1H NMR spectroscopy as well as single crystal X-ray crystallography. The structures of 14 consist of [WS4]2− tetrahedra which are linked to the organic ammonium cations via N–H⋯S hydrogen bonding. The strength and number of the S⋯H interactions affect the W–S bond lengths as evidenced by distinct short and long W–S bonds. The IR spectra exhibit splitting of the W–S vibrations, which can be attributed to the distortion of the [WS4]2− tetrahedron. From a comparative study of several known tetrathiotungstates it is observed that a difference of more than 0.033 ? between the longest and shortest W–S bonds in a tetrathiotungstate will result in the splitting of the asymmetric stretching vibration of the W–S bond.  相似文献   

14.
Thermal decomposition reactions of tetraalkylammonium thiotungstates, (R4N)2WS4 (R = methyl to heptyl), were investigated with DSC and DTA-TG coupled with mass spectroscopy (MS). The results demonstrate that the complexity of thermal decomposition reactions is significantly influenced by the alkyl group, i.e., more complex steps are observed for the materials with longer alkyl chain lengths. Tetraethyl and tetrapropyl complexes show reversible and irreversible phase transitions detected by DSC experiments combined with thermodiffractometry. The tetrapentyl compound undergoes an irreversible phase transition while the tetraheptyl sample exhibits a glass-like transition and melting prior to decomposition. The whole series of compounds decompose without forming sulfur rich WSn (n = 3 or 4) intermediates. The final WS2 products are nearly stoichiometric for R = methyl to pentyl but for hexyl and heptyl samples the sulfur content is significantly reduced with a W/S ratio of about 1.5. The residual carbon and hydrogen contents increase in the final decomposition products in the same order as the number of C atoms in R4N increase. For the N content no clear trend is obvious. A general thermal decomposition mechanism is suggested which follows a bimolecular nucleophilic substitution reaction. In the SEM images only for R = heptyl the formation of macro-pores with a sponge-like morphology is seen, but for the other precursors compact materials are formed which in part display a well developed morphology. X-ray diffraction analysis of the final products shows the formation of amorphous WS2 up to the tetrapentyl precursor. But for the tetrahexyl and tetraheptyl materials the W:S ratio is significantly smaller than 1:2 and large amounts of C and H are determined by chemical analyses. In accordance with previously reported results it can be assumed that a carbosulfide phase is formed by a mixed C-W-S sandwich layered structure.  相似文献   

15.
Iron oxide modified with single- or double-metal additives (Cr, Ni, Zr, Ag, Mo, Mo-Cr, Mo-Ni, Mo-Zr and Mo-Ag), which can store and supply pure hydrogen by reduction of iron oxide with hydrogen and subsequent oxidation of reduced iron oxide with steam (Fe3O4 (initial Fe2O3)+4H2↔3Fe+4H2O), were prepared by impregnation. Effects of various metal additives in the samples on hydrogen production were investigated by the above-repeated redox. All the samples with Mo additive exhibited a better redox performance than those without Mo, and the Mo-Zr additive in iron oxide was the best effective one enhancing hydrogen production from water decomposition. For Fe2O3-Mo-Zr, the average H2 production temperature could be significantly decreased to 276 °C, the average H2 formation rate could be increased to 360.9-461.1 μmol min−1 Fe-g−1 at operating temperature of 300 °C and the average storage capacity was up to 4.73 wt% in four cycles, an amount close to the IEA target.  相似文献   

16.
Abstract

Tunisian industrial phosphoric acid H3PO4 was supported on silica gel SiO2 (SIPA) to catalyze the hydrolysis reaction of aqueous alkaline sodium borohydride (NaBH4). The SiO2 was produced from purified quartz sand using alkali fusion-acidification chemical process. The BET surface area results indicate that the prepared silica gel could reach a specific surface area up to 585 m2/g. The addition of PO3H2 functional groups resulted in an increase of surface acidity of SiO2 catalyst as shown by FT-IR and DTA-DTG spectra. The total acidity of SIPA catalyst was determined by titration to be 2.8?mmol H+/g. SEM/EDS maps reveal the distribution of heavy metals on the silica surface. The effect of supported PO3H2 functional groups and heavy metals on the NaBH4 hydrolysis reaction was studied for different ratios of SIPA catalyst to NaBH4. The sample 12SIPA/NaBH4 leads to a very high hydrogen generation rate (up to 90%). The activation energy of hydrogen generation by NaBH4 hydrolysis was 25.7?kJ mol?1.  相似文献   

17.
Unlike the usual method of COx (x = 1, 2) hydrogenation using H2 directly, H2S and HSiSH (silicon-activated H2S) were selected as alternative hydrogen sources in this study for the COx hydrogenation reactions. Our results suggest that it is kinetically infeasible for hydrogen in the form of H2S to transfer to COx at low temperatures. However, when HSiSH is employed instead, the title reaction can be achieved. For this approach, the activation of CO2 is initiated by its interaction with the HSiSH molecule, a reactive species with both a hydridic Hδ− and protonic Hδ+. These active hydrogens are responsible for the successive C-end and O-end activations of CO2 and hence the final product (HCOOH). This finding represents a good example of an indirect hydrogen source used in CO2 hydrogenation through reactivity tuned by silicon incorporation, and thus the underlying mechanism will be valuable for the design of similar reactions.  相似文献   

18.
Bulky AgGaS2 was synthesized as a p-type semiconductor photocatalyst by a conventional solid state reaction under N2 flow for hydrogen production under visible light. To remove impurity phases involved in the synthesized material and improve crystallinity, the material was treated at various temperatures of 873-1123 K under H2S flow. Impurity phases were identified as β-Ga2O3 and Ag9GaS6 with the cell refinements of XRD and the local coordination structure around gallium atom in AgGaS2 was investigated by EXAFS. As the H2S-treatment temperature increased, the contribution from impurity phases was diminished. When the temperature reached 1123 K, the impurity phases were completely removed and the material showed the highest photocatalytic activity. Thus, the post-synthetic H2S treatment could be applied for the synthesis of sulfide-type photocatalysts with high activity.  相似文献   

19.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号