首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Versatility of MMAP[K] and the MMAP[K]/G[K]/1 Queue   总被引:1,自引:0,他引:1  
HE  Qi-Ming 《Queueing Systems》2001,38(4):397-418
This paper studies a single server queueing system with multiple types of customers. The first part of the paper discusses some modeling issues associated with the Markov arrival processes with marked arrivals (MMAP[K], where K is an integer representing the number of types of customers). The usefulness of MMAP[K] in modeling point processes is shown by a number of interesting examples. The second part of the paper studies a single server queueing system with an MMAP[K] as its input process. The busy period, virtual waiting time, and actual waiting times are studied. The focus is on the actual waiting times of individual types of customers. Explicit formulas are obtained for the Laplace–Stieltjes transforms of these actual waiting times.  相似文献   

2.
This paper studies a multi-server queueing system with multiple types of customers and last-come-first-served (LCFS) non-preemptive service discipline. First, a quasi-birth-and-death (QBD) Markov process with a tree structure is defined and some classical results of QBD Markov processes are generalized. Second, the MMAP[K]/PH[K]/N/LCFS non-preemptive queue is introduced. Using results of the QBD Markov process with a tree structure, explicit formulas are derived and an efficient algorithm is developed for computing the stationary distribution of queue strings. Numerical examples are presented to show the impact of the correlation and the pattern of the arrival process on the queueing process of each type of customer.  相似文献   

3.
We investigate GI X /M(n)//N systems with stochastic customer acceptance policy, function of the customer batch size and the number of customers in the system at its arrival. We address the time-dependent and long-run analysis of the number of customers in the system at prearrivals and postarrivals of batches and seen by customers at their arrival to the system, as well as customer blocking probabilities. These results are then used to derive the continuous-time long-run distribution of the number of customers in the system. Our analysis combines Markov chain embedding with uniformization and uses stochastic ordering as a way to bound the errors of the computed performance measures.   相似文献   

4.
In this paper we introduce the adaptive MMAP[K] arrival process and analyze the adaptive MMAP[K]/PH[K]/1 queue. In such a queueing system, customers of K different types with Markovian inter-arrival times and possibly correlated customer types, are fed to a single server queue that makes use of r thresholds. Service times are phase-type and depend on the type of customer in service. Type k customers are accepted with some probability ai,k if the current workload is between threshold i − 1 and i. The manner in which the arrival process changes its state after generating a type k customer also depends on whether the customer is accepted or rejected.  相似文献   

5.
In this paper, we propose approximations to compute the steady-state performance measures of the M/GI/N+GI queue receiving Poisson arrivals with N identical servers, and general service and abandonment-time distributions. The approximations are based on scaling a single server M/GI/1+GI queue. For problems involving deterministic and exponential abandon times distributions, we suggest a practical way to compute the waiting time distributions and their moments using the Laplace transform of the workload density function. Our first contribution is numerically computing the workload density function in the M/GI/1+GI queue when the abandon times follow general distributions different from the deterministic and exponential distributions. Then we compute the waiting time distributions and their moments. Next, we scale-up the M/GI/1+GI queue giving rise to our approximations to capture the behavior of the multi-server system. We conduct extensive numerical experiments to test the speed and performance of the approximations, which prove the accuracy of their predictions.   相似文献   

6.
We study a PH/G/1 queue in which the arrival process and the service times depend on the state of an underlying Markov chain J(t) on a countable state spaceE. We derive the busy period process, waiting time and idle time of this queueing system. We also study the Markov modulated EK/G/1 queueing system as a special case.  相似文献   

7.
We study a BMAP/>SM/1 queue with batch Markov arrival process input and semi‐Markov service. Service times may depend on arrival phase states, that is, there are many types of arrivals which have different service time distributions. The service process is a heterogeneous Markov renewal process, and so our model necessarily includes known models. At first, we consider the first passage time from level {κ+1} (the set of the states that the number of customers in the system is κ+1) to level {κ} when a batch arrival occurs at time 0 and then a customer service included in that batch simultaneously starts. The service descipline is considered as a LIFO (Last‐In First‐Out) with preemption. This discipline has the fundamental role for the analysis of the first passage time. Using this first passage time distribution, the busy period length distribution can be obtained. The busy period remains unaltered in any service disciplines if they are work‐conserving. Next, we analyze the stationary workload distribution (the stationary virtual waiting time distribution). The workload as well as the busy period remain unaltered in any service disciplines if they are work‐conserving. Based on this fact, we derive the Laplace–Stieltjes transform for the stationary distribution of the actual waiting time under a FIFO discipline. In addition, we refer to the Laplace–Stieltjes transforms for the distributions of the actual waiting times of the individual types of customers. Using the relationship between the stationary waiting time distribution and the stationary distribution of the number of customers in the system at departure epochs, we derive the generating function for the stationary joint distribution of the numbers of different types of customers at departures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We consider a discrete-time single server N  -policy GI/Geo/1GI/Geo/1 queueing system. The server stops servicing whenever the system becomes empty, and resumes its service as soon as the number of waiting customers in the queue reaches N. Using an embedded Markov chain and a trial solution approach, the stationary queue length distribution at arrival epochs is obtained. Furthermore, we obtain the stationary queue length distribution at arbitrary epochs by using the preceding result and a semi-Markov process. The sojourn time distribution is also presented.  相似文献   

9.
This paper proposes a polynomial factorization approach for queue length distribution of discrete time GI X /G/1 and GI X /G/1/K queues. They are analyzed by using a two-component state model at the arrival and departure instants of customers. The equilibrium state-transition equations of state probabilities are solved by a polynomial factorization method. Finally, the queue length distributions are then obtained as linear combinations of geometric series, whose parameters are evaluated from roots of a characteristic polynomial.  相似文献   

10.
Customers arriving according to a Markovian arrival process are served at a single server facility. Waiting customers generate priority at a constant rate γγ; such a customer waits in a waiting space of capacity 1 if this waiting space is not already occupied by a priority generated customer; else it leaves the system. A customer in service will be completely served before the priority generated customer is taken for service (non-preemptive service discipline). Only one priority generated customer can wait at a time and a customer generating into priority at that time will have to leave the system in search of emergency service elsewhere. The service times of ordinary and priority generated customers follow PH-distributions. The matrix analytic method is used to compute the steady state distribution. Performance measures such as the probability of n consecutive services of priority generated customers, the probability of the same for ordinary customers, and the mean waiting time of a tagged customer are found by approximating them by their corresponding values in a truncated system. All these results are supported numerically.  相似文献   

11.
在ATM网络中顾客的到达率和服务率都随着环境的变化而变化.本文考虑的是具有随机环境的多服务台排队模型,在随机状态为i(1≤i≤m)时,到达时间间隔和服务时间分布分别是服从参数为λ_i和μ_1的指数分布,系统具有有限缓冲位置和无限位置的重试轨道,重试失败的顾客以一定概率被系统丢弃而永远离开系统.运用拟生灭过程方法,我们求得了稳态条件及在稳态下各个环境上各项条件排队指标及平均排队指标,通过数值模拟说明了高峰期到达率和其它参数对系统状态及忙期循环的影响.  相似文献   

12.
In this paper, we show that the discrete GI/G/1 system can be easily analysed as a QBD process with infinite blocks by using the elapsed time approach in conjunction with the Matrix-geometric approach. The positive recurrence of the resulting Markov chain is more easily established when compared with the remaining time approach. The G-measure associated with this Markov chain has a special structure which is usefully exploited. Most importantly, we show that this approach can be extended to the analysis of the GI X /G/1 system. We also obtain the distributions of the queue length, busy period and waiting times under the FIFO rule. Exact results, based on computational approach, are obtained for the cases of input parameters with finite support – these situations are more commonly encountered in practical problems.  相似文献   

13.
Abstract

Customers arriving according to a Markovian arrival process are served at a c server facility. Waiting customers generate into priority while waiting in the system (self-generation of priorities), at a constant rate γ; such a customer is immediately taken for service, if at least one of the servers is free. Else it waits at a waiting space of capacity c exclusively for priority generated customers, provided there is vacancy. A customer in service is not preempted to accommodate a priority generated customer. The service times of ordinary and priority generated customers follow distinct PH-distributions. It is proved that the system is always stable. We provide a numerical procedure to compute the optimal number of servers to be employed to minimize the loss to the system. Several performance measures are evaluated.  相似文献   

14.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2003,44(2):183-202
We study a GI/M/c type queueing system with vacations in which all servers take vacations together when the system becomes empty. These servers keep taking synchronous vacations until they find waiting customers in the system at a vacation completion instant.The vacation time is a phase-type (PH) distributed random variable. Using embedded Markov chain modeling and the matrix geometric solution methods, we obtain explicit expressions for the stationary probability distributions of the queue length at arrivals and the waiting time. To compare the vacation model with the classical GI/M/c queue without vacations, we prove conditional stochastic decomposition properties for the queue length and the waiting time when all servers are busy. Our model is a generalization of several previous studies.  相似文献   

15.
For the single server system under processor sharing (PS) a sample path result for the sojourn times in a busy period is proved, which yields a sample path relation between the sojourn times under PS and FCFS discipline. This relation provides a corresponding one between the mean stationary sojourn times in G/G/1 under PS and FCFS. In particular, the mean stationary sojourn time in G/D/1 under PS is given in terms of the mean stationary sojourn time under FCFS, generalizing known results for GI/M/1 and M/GI/1. Extensions of these results suggest an approximation of the mean stationary sojourn time in G/GI/1 under PS in terms of the mean stationary sojourn time under FCFS. Mathematics Subject Classification (MSC 2000) 60K25· 68M20· 60G17· 60G10 This work was supported by a grant from the Siemens AG.  相似文献   

16.
Brandt  Andreas  Brandt  Manfred 《Queueing Systems》2004,47(1-2):147-168
The paper deals with the two-class priority M/M/1 system, where the prioritized class-1 customers are served under FCFS preemptive resume discipline and may become impatient during their waiting for service with generally distributed maximal waiting times. The class-2 customers have no impatience. The required mean service times may depend on the class of the customer. As the dynamics of class-1 customers are related to the well analyzed M/M/1+GI system, our aim is to derive characteristics for class-2 customers and for the whole system. The solution of the balance equations for the partial probability generating functions of the detailed system state process is given in terms of the weak solution of a family of boundary value problems for ordinary differential equations, where the latter can be solved explicitly only for particular distributions of the maximal waiting times. By means of this solution formulae for the joint occupancy distribution and for the sojourn and waiting times of class-2 customers are derived generalizing corresponding results recently obtained by Choi et al. in case of deterministic maximal waiting times. The latter case is dealt as an example in our paper.  相似文献   

17.
In this paper we study a queueing model of assembly-like manufacturing operations. This study was motivated by an examination of a circuit pack testing procedure in an AT & T factory. However, the model may be representative of many manufacturing assembly operations. We assume that customers fromn classes arrive according to independent Poisson processes with the same arrival rate into a single-server queueing station where the service times are exponentially distributed. The service discipline requires that service be rendered simultaneously to a group of customers consisting of exactly one member from each class. The server is idle if there are not enough customers to form a group. There is a separate waiting area for customers belonging to the same class and the size of the waiting area is the same for all classes. Customers who arrive to find the waiting area for their class full, are lost. Performance measures of interest include blocking probability, throughput, mean queue length and mean sojourn time. Since the state space for this queueing system could be large, exact answers for even reasonable values of the parameters may not be easy to obtain. We have therefore focused on two approaches. First, we find upper and lower bounds for the mean sojourn time. From these bounds we obtain the asymptotic solutions as the arrival rate (waiting room, service rate) approaches zero (infinity). Second, for moderate values of these parameters we suggest an approximate solution method. We compare the results of our approximation against simulation results and report good correspondence.  相似文献   

18.
In this paper, we consider an N-server queueing model with homogeneous servers in which customers arrive according to a stationary Poisson arrival process. The service times are exponentially distributed. Two new customer’s service disciplines assuming simultaneous service of arriving customer by all currently idle servers are discussed. The steady state analysis of the queue length and sojourn time distribution is performed by means of the matrix analytic methods. Numerical examples, which illustrate advantage of introduced disciplines comparing to the classical one, are presented.  相似文献   

19.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2002,40(3):283-294
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.  相似文献   

20.
Single server M/G/1-queues with an infinite buffer are studied; these permit inclusion of server vacations and setup times. A service discipline determines the numbers of customers served in one cycle, that is, the time span between two vacation endings. Six service disciplines are investigated: the gated, limited, binomial, exhaustive, decrementing, and Bernoulli service disciplines. The performance of the system depends on three essential measures: the customer waiting time, the queue length, and the cycle duration. For each of the six service disciplines the distribution as well as the first and second moment of these three performance measures are computed. The results permit a detailed discussion of how the expected value of the performance measures depends on the arrival rate, the customer service time, the vacation time, and the setup time. Moreover, the six service disciplines are compared with respect to the first moments of the performance measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号