首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
(+)-(1S, 3S, 6S, 8S)-and (?)-(1R, 3R, 6R, 8R)-4, 9-Twistadiene: Synthesis and Absolute Configuration A synthesis and the determination of the absolute configuration of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-4, 9-twistadiene ((+)- and (?)- 4 , respectively) is described. Their chiroptical properties are compared with those of saturated twistane ((+)- and (?)- 5 ) as well as with those of the unsaturated and saturated 2, 7-dioxatwistane analogs (+)- and (?)- 9 , and (+)- and (?)- 10 , respectively, which also are compounds of known absolute configurations.  相似文献   

2.
(+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene. A synthesis and the determination of the sense of chirality of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene ((+)- 5 and (?)- 5 , respectively) is described.  相似文献   

3.
The reaction of (1S,2S)-2-amino-1-(4-nitrophenyl)-1,3-propanediol with glutaraldehyde has been studied. It has been established on the basis of AM1 and PM3 calculations and 1H NMR spectra recorded in the presence of the shift reagent Eu(fod)3 that (1S,3S,4S,7R,11R)-3-(4-nitrophenyl)-11-aza-2,6-dioxatricyclo[5,3,1,04,11]undecane is formed as the result of the reaction.  相似文献   

4.
(R,R)-Butanediol (dichloromethyl)boronate ( 1 ) with 1 equiv. allylmagnesium halide yields (R,R)-2,3-butanediol (1S)-(1-chloro-3-butenyl)boronate ( 3 ) together with the diallylated product (R,R)-2,3-butanediol (1-allyl-3-butenyl)boronate ( 4 ). The formation of 4 is unprecedented in reactions of α-chloroboronic esters with Grignard reagents. With methylmagnesium bromide 3 yielded (R,R)-2,3-butanediol (1S)-(1-methyl-3-butenyl)boronate ( 5 ), which failed to hydrolyze with water. Hydrolysis of 3 yielded impure α-chloroboronic acid, which was esterified with pinacol and treated with methylmagnesium bromide to form 6 , which with (dichloromethyl)lithium followed by methylmagnesium bromide yielded diastereomeric boronic esters 7 and 8 . Oxidation by hydrogen peroxide yielded (2S,3S)- and (2R,3S)-3-methyl-5-hexen-2-ol ( 9 and 10 , ees unknown). Treatment of (s)-pinanediol allylboronate ( 11 ) with (dichloromethyl)lithium at −100°C followed by zinc chloride at up to 25°C has proceeded in the normal way to form (s)-pinanediol (1S)-(1-chloro-3-butenyl)-boronate ( 12 ), which has been elaborated via 13 , 14 , and 15 to (2S,3S)-3-methyl-5-hexen-2-ol ( 9 ) in 95% de.  相似文献   

5.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

6.
The temperature dependent CD. spectra of (3S, 3′R)- and (3S, 3′S)-adonixanthin are compared with those of (3R, 3′R)-zeaxanthin ( 1 ) and (3S, 3′S)-astaxanthin ( 2 ). The room temperature spectra of 1 and 2 are quite similar. On cooling to ?180° the CD. of 1 simply intensifies, the CD. of 2 changes sign and becomes also very intense. The room-temperature CD. of (3S, 3′R)-adonixanthin ( 3 ) resembles closely those of 1 and 2 at room temperature. On cooling, however, it becomes weak and changes strongly its shape. With (3S, 3′S)-adonixanthin ( 4 ) it is the low-temperature spectrum which resembles that of 2 at low temperature, whereas the room-temperature spectrum is weak and quite different in shape. These observations can be explained with temperature dependent equilibria where the end groups are twisted out of the plain of the chain thereby conferring chirality to the conjugated system.  相似文献   

7.
《Tetrahedron: Asymmetry》2006,17(20):2876-2883
An efficient and a convenient enantioselective synthesis of (3R,4S)-3-methoxy-4-methylaminopyrrolidine has been carried out by a lipase-mediated resolution protocol. This method describes the preparation of (±)-1-Cbz-cis-3-azido-4-hydroxypyrrolidine starting from commercially available diallylamine followed by ring-closing metathesis (RCM) via SN2 displacement reactions. Pseudomonas cepacia lipase immobilized on diatomaceous earth (Amano PS-D) provides (3R,4S)-11 and (3S,4R)-12 in an excellent enantiomeric excess.  相似文献   

8.
Epoxidation of (?)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((?)-5) followed by saponification afforded (+)-(1R,4R,5R,6R)-5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ((+)-7). Reduction of (+)-7 with diisobutylaluminium hydride (DIBAH) gave (+)-1,3:2,5-dianhydroviburnitol ( = (+)-(1R,2R,3S,4R,6S)-4,7-dioxatricyclo[3.2.1.03,6]octan-2-ol; (+)-3). Hydride reductions of (±)-7 were less exo-face selective than reductions of bicyclo[2.2.1]heptan-2-one and its derivatives with NaBH4, AlH3, and LiAlH4 probably because of smaller steric hindrance to endo-face hydride attack when C(5) and C(6) of the bicyclo-[2.2.1]heptan-2-one are part of an exo oxirane ring.  相似文献   

9.
We have isolated from the carpophores of Boletus satanas Lenz (Basidiomycetae) (2S,4S)-(+)-γ-hydroxynorvaline ( 1 ) and (2S,4R)-(?)-γ-hydroxynorvaline ( 2 ). The chirality of each diastereomer has been determined by chemical synthesis starting from optically active precursors and by application of different chiroptical methods. Gaschromatographic separation of the derived diastereomeric N-[(S)-α-methoxypropionyl]-lactones reveals that the optical purity of natural 2 is 88% whereas 1 exists as a partial racemate: (2S,4S): (2R,4R) = 3:2. Muscarine could not be detected in the carpophores of B. satanas, contrary to some literature data but basic substances of unknown structure are present in low concentration.  相似文献   

10.
《Tetrahedron: Asymmetry》2007,18(18):2218-2226
The trans-configured fosfomycin analogue, diethyl (1S,2S)-1,2-epoxy-3-hydroxypropylphosphonate, was synthesised by the intramolecular Williamson reaction of diethyl (1S,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate. The cis-analogue was obtained as O-ethyl or O,O-diethyl (1R,2S)-1,2-epoxy-3-hydroxypropylphosphonates, when (1R,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate or its 3-O-trityl derivative were used as starting materials, respectively. The intramolecular Williamson cyclisations of diethyl (1S,2R)- and (1R,2S)-1-benzyloxy-3-hydroxy-2-mesyloxypropylphosphonates led to diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, respectively, with the concomitant formation of diethyl (E)-1-benzyloxy-3-hydroxyprop-1-en-1-phosphonate. From diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, enantiomerically pure diethyl (1S,2S)- and (1R,2S)-1,2-dihydroxypropylphosphonates were obtained by catalytic hydrogenation, while diethyl (1S,2S)- and (1R,2S)-3-acetamido-1,2-dihydroxypropylphosphonates were produced after epoxide ring opening with dibenzylamine, acetylation and hydrogenolysis.  相似文献   

11.
The synthesis of potential hydroxy metabolites of the brain imaging agents methyl (1R,2S,3S,5S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate and methyl (1R,2S,3S,5S)-3-(4-iodophenyl)-8-(3-fluoropropyl)-8-azabicyclo[3.2.1]octane-2-carboxylate are reported. The nitration of iodophenyltropanes 1 or 2 with nitronium tetrafluoroborate afforded the nitro compounds 3 or 4 which were reduced with iron powder to the corresponding amino compounds 5 and 6 . The final hydroxylated products 7 and 8 were obtained via a modified Sandmeyer reaction.  相似文献   

12.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. V. Synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin by Asymmetric Hydroboration. A New Approach to Optically Active Carotenoid Building Units The synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin ( 1 ), ( 19 ) and ( 21 ) is reported utilizing asymmetric hydroboration as the key reaction. Thus, safranol isopropenylmethylether ( 4 ) is hydroborated with (+)- and (?)-(IPC)2BH to give the optically pure key intermediates 5 and 7 resp., which are transformed into the above-mentioned C40-compounds.  相似文献   

13.
The synthesis of (1S,4S,7S)- and (1R,4R,7S)-2-(4-tolylsulfonyl>5-phenylmethyl-7-rnethyl-2,5-diazabicyclo-[2.2.1]heptanes ( 20 ) and ( 22 ) from trans 4-hydroxy-L-proline is described.  相似文献   

14.
Abstract

An asymmetric synthesis of (+)- and (–)-methiine (S-methyl-(R)-cysteine sulfoxide) diastereomers has been developed. These natural sulfur compounds were isolated from a variety of Brassica vegetables. As the starting compound, (R)-cysteine was used, which was methylated to form (R)-S-methylcysteine. Then the oxidation of S-methylcysteine with tert-butyl hydroperoxide catalyzed by the chiral tetra(isopropylate)titanium/(S)- or (R)-Binol complex led to the formation of (1?R,2S)-(+)- or (1?R,2R)-(–)-methiin stereomers.  相似文献   

15.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

16.
《Tetrahedron: Asymmetry》1999,10(2):207-211
The reaction of 2-lithiophenyldiphenylphosphine with phosphorus trichloride afforded the new unsymmetric phosphine, dichloro(2-diphenylphosphinophenyl)phosphine (4). Condensation of 4 with (a) (2R,3R)-dimethyl tartrate or (b) (S)-binaphthol in the presence of triethylamine gave new chiral phosphine-phosphonite ligands, (2R,3R)-[2-(2′-(diphenylphosphino)phenyl)-4,5-bis(carbomethoxy)-1,3,2-dioxaphospholane] ((2R,3R)-5) and (S)-[2-(diphenylphosphino)benzene][1,1′-binaphthalen-2,2′-diyl]phosphonite] ((S)-6). The analogous reaction of 4 with (1R,2S)-ephedrine using N-methylmorpholine as the base, gave [2-(2′-(diphenylphosphino)phenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine] (7) as a 95:5 mixture of diastereoisomers.  相似文献   

17.
Methyl 2-O-benzyl-3,6-thioanhydro-α-D-mannopyranoside ( 9 ) was obtained in eight steps from the commercially available methyl α-D-glucopyranoside. Compound 9 was transformed into (2R,3R,4S)-3-benzyloxy-4-hydroxy-2-[(R)-1-benzyloxy-4-hydroxybutyl]thiolane ( 14 ) by acid hydrolysis of its 2,4-di-O-benzyl derivative 10 followed by reaction of the not isolated 2,4-di-O-benzyl-3,6-thioanhydro-D-mannose ( 11 ) with ethoxycarbonylmethylenetriphenylphosphorane to give an = 1:1 E/Z mixture of the corresponding α,β-unsaturated ester ( 12 ). Finally, catalytic hydrogenation of 12 to ethyl (R)-4-benzyloxy-4-[(2′R)3′R,4′S)-3′-benzyloxy-4′-hydroxythiolan-2′-yl]butanoate ( 13 ) and subsequent reduction with lithium aluminum hydride gave the title compound 14 .  相似文献   

18.
Simple Conversion of (R)-3-Hydroxybutanoic Acid to the (S)-Enantiomer and its Lactone (–)-(S)-4-Methylixetan-2-one Condensation of ( R )-3-hydroxybutanoic acid (1) with ethyl orthoacetate gives a 2-ethoxy-substituted (1,3)dioxanone 2 which is thermally labile: at ca. 100°, two competing processes commence, one leading to ethyl ( R )-3-acetoxybutanoate ( 3 ), the other one - with complete inversion of configuration - to the ( S )-4-methylixetan-2-one ( 4 ) and ethyl acetate. These can be readily separated by fractional distillation. Thus, enantiomerically pure ( S )-3-hydroxybutanoic acid (ent- 1 ) and l-2-alkyl-3-hydroxybutanoic-acid derivatives (such as 6 and 8 ) become available from the biopolymer PHB, the precursor to the acid 1 .  相似文献   

19.
Chiral Building Blocks for Syntheses by Kolbe Electrolysis of Enantiomerically Pure β-Hydroxybutyric-Acid Derivatives. (R)- and (S)-Methyl-, and (R)-Trifluoromethyl-γ-butyrolactones, and -δ-valerolactones The coupling of chiral, non-racemic R* groups by Kolbe electrolysis of carboxylic acids R*COOH is used to prepare compounds with a 1.4- and 1.5-distance of the functional groups. The suitably protected β-hydroxycarboxylic acids (R)- or (S)-3-hydroxybutyric acid, (R)-4,4,4-trifluoro-3-hydroxybutyric acid (as acetates; see 1 – 6 ), and (S)-malic acid (as (2S,5S)-2-(tert-butyl)-5-oxo-1,3-dioxolan-4-acetic acid; see 7 ) are decarboxylatively dimerized or ‘codimerized’ with 2-methylpropanoic acid, with 4-(formylamino)butyric acid, and with monomethyl malonate and succinate. The products formed are derivatives of (R,R)-1,1,1,6,6,6-hexafluoro-2,5-hexanediol (see 8 ), of (R)-5,5,5-trifluoro-4-hydroxypentanoic acid (see 9,10 ), of (R)- and (S)-5-hydroxyhexanoic acid (see 11 ) and its trifluoro analogue (see 12, 13 ), of (S)-2-hydroxy- and (S,S)-2,5-dihydroxyadipic acid (see 23, 20 ), of (S)-2-hydroxy-4-methylpentanoic acid (‘OH-leucine’, see 21 ), and of (S)-2-hydroxy-6-aminohexanoic acid (‘OH-lysine’, see 22 ). Some of these products are further converted to CH3- or CF3-substituted γ- and δ-lactones of (R)- or (S)-configuration ( 14 , 16 – 19 ), or to an enantiomerically pure derivative of (R)-1-hydroxy-2-oxocyclopentane-1-carboxylic acid (see 24 ). Possible uses of these new chiral building blocks for the synthesis of natural products and their CF3 analogues (brefeldin, sulcatol, zearalenone) are discussed. The olfactory properties of (R)- and (S)-δ-caprolactone ( 18 ) are compared with those of (R)-6,6,6-trifluoro-δ-caprolactone ( 19 ).  相似文献   

20.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号