首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and effective extraction method based on matrix solid-phase dispersion (MSPD) was developed to determine bifenthrin, buprofezin, tetradifon, and vinclozolin in propolis using gas chromatography–mass spectrometry in selected ion monitoring mode (GC–MS, SIM). Different method conditions were evaluated, for example type of solid phase (C18, alumina, silica, and Florisil), the amount of solid phase and eluent (n-hexane, dichloromethane, dichloromethane–n-hexane (8:2 and 1:1, v/v) and dichloromethane–ethyl acetate (9:1, 8:2 and 7:3, v/v)). The best results were obtained using 0.5 g propolis, 1.0 g silica as dispersant sorbent, 1.0 g Florisil as clean-up sorbent, and dichloromethane–ethyl acetate (9:1, v/v) as eluting solvent. The method was validated by analysis of propolis samples fortified at different concentration levels (0.25 to 1.0 mg kg−1). Average recoveries (four replicates) ranged from 67% to 175% with relative standard deviation between 5.6% and 12.1%. Detection and quantification limits ranged from 0.05 to 0.10 mg kg−1 and 0.15 to 0.25 mg kg−1 propolis, respectively.  相似文献   

2.
The fate of the acaricide fenbutatin oxide (FBTO) during the elaboration of white wine is evaluated. Matrix solid-phase dispersion (MSPD) and solid-phase microextraction (SPME) were used as sample preparation techniques applied to the semi-solid and the liquid matrices involved in this research, respectively. Selective determination of FBTO was achieved by gas chromatography with atomic emission detection (GC–AED). GC coupled to mass spectrometry was also used to establish the identity of FBTO by-products detected in must and wine samples. MSPD extractions were accomplished using C18 as dispersant and co-sorbent. Sugars and other polar interferences were first removed with water and water/acetone mixtures, then FBTO was recovered with 8 mL of acetone. When used in combination with GC–AED, the MSPD method provided limits of quantification (LOQs) in the low nanogram per gram range, recoveries around 90% and relative standard deviations below 13% for extractions performed in different days. Performance of SPME for must and wine was mainly controlled by the extraction temperature, time and fibre coating. Under final conditions, FBTO was extracted in the headspace mode for 45 min at 100 °C, using a 100 μm poly(dimethylsiloxane)-coated fibre. The achieved LOQs remained around or below 0.1 ng mL−1, depending on the type of sample, and the inter-day precision ranged from 10% to 13%. FBTO residues in grapes stayed mostly on the skin of the fruit. Although FBTO was not removed during must and white wine elaboration, it remained associated with suspended particles existing in must and lees, settled after must fermentation, with a negligible risk of being transferred to commercialised wine. On the other hand, two by-products of FBTO (bis and mono (2-methyl-2-phenylpropyl) tin) were identified, for first time, in must and final white wines obtained from FBTO treated grapes. Found values for the first species ranged from 0.03 to 0.9 ng mL−1.  相似文献   

3.
The present work describes the development and validation of an analytical method based on liquid chromatography (LC), coupled with tandem mass spectrometry (MS/MS) that allows the determination and confirmation of several endocrine-disrupting chemicals (EDCs) in honey. The EDCs studied were nine phenols of different nature: chlorophenols (2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol), alkylphenols (4-tert-butylphenol, 4-tert-octylphenol, and 4-n-octylphenol) bisphenols (bisphenol-A and bisphenol-F), and 4-tert-butylbenzoic acid. The method incorporates a restricted-access material (RAM), coupled on-line to the LC-MS/MS system, which allows direct injection of the matrix into the RAM-LC-MS/MS system. The optimized method developed, RAM-LC-MS/MS, was applied to fortified honey samples, affording detection limits in the 0.6–7.2 ng g−1 range, calculated for a signal-to-noise ratio of 3. In addition, the method was validated as a quantitative confirmatory method according to European Union Decision 2002/657/EC. The validation criteria evaluated were linearity, repeatability, reproducibility, recovery, decision limits, detection capabilities, specificity, and ruggedness. Repeatability and within-laboratory reproducibility were evaluated at two concentration levels, being ±11% or below at 20 ng g−1. The decision limits (CCα) and detection capabilities (CCβ) were in the 1.7–12.6 and 2.8–21.6 ng g−1 range, respectively.  相似文献   

4.
A multiresidue method has been developed for the simultaneous determination of sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethoxydiazine, sulfamethylthiazole, sulfamethazine, sulfamonomethoxine, sulfamethoxypyridazine, sulfisoxazole, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline in natural animal casings by HPLC after solid-phase extraction. The sulfonamides were extracted with acetonitrile and the extract cleaned up with an Oasis MCX SPE cartridge prior to analysis. Separation was on a ZOBAX Eclipse XDB-C8 column using gradient elution with acetonitrile/methanol/0.1% acetic acid. The effect of separation conditions on chromatographic behavior and recovery has been studied. Calibration graphs were linear with very good correlation coefficients (r = 0.9983−0.9996) in the concentration range from 0.02 to 1 μg mL−1. The limits of quantitation (LOQ) for the 13 sulfonamides were in the range of 1.5–2.2 μg kg−1. Decision limits (CCα) and detection capabilities (CCβ) were in the range of 105.2–111.0 and 113.0–120.2 μg kg−1, respectively. The recovery for casings spiked with 1.5–100 μg kg−1 ranged from 65.2 to 85.9%. The relative standard deviations (RSDs) of the sulfonamides for six measurements at 100 μg kg−1 were from 2.2 to 7.7%. The applicability of the method to the analysis of salted swine casings, salted sheep casings and dry casing samples was demonstrated.  相似文献   

5.
A new method based on matrix solid-phase dispersion (MSPD) extraction was studied for the extraction of amitrole (3-amino-1,2,4-triazole), and its metabolite urazole (3,5-dihydroxy-1,2,4-triazole), in apple samples. The influence of experimental conditions on the yield of the extraction process and on the efficiency of the cleanup step was evaluated. Determination was carried out by capillary electrophoresis (CE) with electrochemical detection, demonstrating the compatibility between MSPD and CE techniques. The method has been successfully applied to different apple varieties. Recoveries in samples spiked at 1.6 and 1.7 μg g−1 for amitrole and urazole were 88 and 82%, respectively. The limits of detection were 0.4 μg g−1 for both compounds using electrochemical detection.  相似文献   

6.
A mixed anionic–cationic surfactant cloud point extraction (CPE) has been developed using sodium dodecyl sulfate (SDS) and tetrabutylammonium bromide (TBABr) for the extraction and preconcentration of organophosphorus pesticides (OPPs) at ambient temperature before analysis by high-performance liquid chromatography. The studied OPPs were azinphos-methyl, parathion-methyl, fenitrothion, diazinon, chlorpyrifos, and prothiophos. The optimum conditions of the mixed anionic–cationic CPE were 50 mmol L−1 SDS, 100 mmol L−1 TBABr, and 10% (w/v) NaCl. The extracted OPPs were successfully separated within 11 min using the conditions of a Waters Symmetry C8 column, a flow rate of 0.8 mL min−1, a gradient elution of methanol and water, and detection at 210 nm. Linearity was found over the range 0.05–5 μg mL−1, with the correlation coefficients higher than 0.996. The enrichment factor of the target analytes was in the range 6–11, which corresponds to their limits of detection from 1 to 30 ng mL−1. High precisions (intra-day and inter-day) were obtained with relative standard deviation <1.5% (t R) and 10% (peak area). Accuracies (% recovery) of the different spiked OPP concentrations were 82.7–109.1% (water samples) and 80.3–113.3% (fruit juice samples). No contamination by the OPPs was observed in any studied samples.  相似文献   

7.
In-line solid-phase extraction–capillary electrophoresis coupled with mass spectrometric detection (SPE–CE–MS) has been used for determination of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), codeine (COD), hydrocodeine (HCOD), and 6-acetylmorphine (6AM) in urine. The preconcentration system consists of a small capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoresis capillary. The SPE–CE–MS experimental conditions were optimized as follows: the sample (adjusted to pH 6.0) was loaded at 930 mbar for 60 min, elution was performed with methanol at 50 mbar for 35 s, 60 mmol L−1 ammonium acetate at pH 3.8 was used as running buffer, the separation voltage was 30 kV, and the sheath liquid at a flow rate of 5.0 μL min−1 was isopropanol–water 50:50 (v/v) containing 0.5% acetic acid. Analysis of urine samples spiked with the four drugs and diluted 1:1 (v/v) was studied in the linear range 0.08–10 ng mL−1. Detection limits (LODs) (S/N = 3) were between 0.013 and 0.210 ng mL−1. Repeatability (expressed as relative standard deviation) was below 7.2%. The method developed enables simple and effective determination of these drugs of abuse in urine samples at the levels encountered in toxicology and doping.  相似文献   

8.
Summary A high-performance liquid chromatographic (HPLC) procedure is described for the identification and quantification of residues of tetracycline antibiotics (TCA) (oxytetracycline, tetracycline, chlortetracycline, and doxycycline), in eggs. Spiked and blank samples were prepared by homogenization with 1∶1 (v/v) acetonitrile-mixed Mcllvaine buffer and EDTA solution (pH 4.0) then centrifugal ultrafiltration. HPLC was performed on a reversed-phase column with acetonitrile-5% (v/v) aqueous acetic acid, 35∶65 (v/v), as mobile phase and photo-diode array detection. Average recoveries (each drug spiked at 0.1, 0.2, 0.3, 0.5 and 1.0 μg g−1) were >-77% with standard deviations (SD) between 1.5 and 3.5%. The inter-assay variabilities and theirSD were <3.4% and <0.7%, respectively, and intra-assay variability was between 2.0 and 3.9%. The limits of quantitation (LOQ) were 0.064 0.087, 0.121, and 0.131 μg g−1 for OTC, TC, CTC, and DC, respectively. The total time required for the analysis of one sample was less than 30 min.  相似文献   

9.
Two rapid methods were evaluated for the simultaneous extraction of seven parabens and two alkylphenols from soil based on matrix solid-phase dispersion (MSPD) and microwave-assisted extraction (MAE). Soil extracts were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide and analyzed by gas chromatography with mass spectrometry. Extraction and clean-up of samples were carried out by both methods in a single step. A glass sample holder, inside the microwave cell, was used in MAE to allow the simultaneous extraction and clean-up of samples and shorten the MAE procedure. The detection limits achieved by MSPD were lower than those obtained by MAE because the presence of matrix interferences increased with this extraction method. The extraction yields obtained by MSPD and MAE for three different types of soils were compared. Both procedures showed good recoveries and sensitivity for the determination of parabens and alkylphenols in two of the soils assayed, however, only MSPD yielded good recoveries with the other soil. Finally, MSPD was applied to the analysis of soils collected in different sites of Spain. In most of the samples analyzed, methylparaben and butylparaben were detected at levels ranging from 1.21 to 8.04 ng g−1 dry weight and 0.48 to 1.02 ng g−1 dry weight, respectively.  相似文献   

10.
Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0–4.0 v/v) and solid to liquid ratio (1:2–1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.  相似文献   

11.
Five organophosphorus pesticides (dichlorvos, diazinon, malathion, methyl parathion and coumaphos) were extracted from propolis by matrix solid-phase dispersion (MSPD) extraction using octadecylsilica (C18, 1.0 g) as dispersant material. The kind of solvent elution (acetonitrile or ethyl acetate), volume (8 mL and 15 mL), and adsorbent used to clean-up the extracts (graphitized carbon, florisil™ and silica) were optimized using fortified propolis samples (5.0 μg g−1). Recovery was determined by gas chromatography with mass spectrometric detection in selected ion monitoring mode (GC/MS-SIM) and statistical analysis was done to determine better extraction conditions. Relatively high recovery and lower relative standard deviation values (3.1–14.6%) were obtained when analytes were eluted with ethyl acetate from the MSPD column. Diazinon, malathion, methyl parathion, and coumaphos show recoveries of 72.7%, 84.6%, 62.6%, and 78.3%, respectively. In contrast, the recovery for dichlorvos was 53.8%. Additional adsorbents tested for clean-up and increase in solvent elution did not affect recoveries positively and caused a high background in chromatograms. Thus, final conditions were 1 mL of sample, 1 g C18 and 8 mL of ethyl acetate.  相似文献   

12.

A new method involving matrix solid-phase dispersion (MSPD) extraction and UPLC in conjunction with photodiode array detection was developed for the rapid and simple determination of Sudan dyes in chili powder. Separation of Sudan I, Sudan II, Sudan III, and Sudan IV was achieved within 2 min on the 1.7 μm Acquity UPLC BEH C18 column by using gradient elution with a mobile phase consisting of acetonitrile–water at a flow rate of 0.5 mL min−1. Optimization of MSPD extraction parameters, such as type of solid sorbent and elution solvent were carried out. Optimal conditions selected for MSPD extraction were 0.25 g of sample, 0.5 g of silica gel as solid sorbent, and 7 mL of acetonitrile–methanol (9:1, v/v) as eluting solvent. Limits of detection ranged between 0.25 and 0.30 mg kg−1 depending on the dye involved. All analytes provided average recoveries from spiked (at 1, 1.5, and 2 mg kg−1) chili powder samples ranging from 81 to 106%. The method was applied to the analysis of chili powder samples obtained from different countries.

  相似文献   

13.
A fast and environment-friendly analytical method was implemented to determine multiclass pesticides in river sediments. Twenty-three pesticides—organochlorine pesticides, organophosphorus pesticides, and triazines—were extracted via matrix solid-phase dispersion (MSPD) and analyzed by gas chromatography–tandem mass spectrometry (GC–MS/MS). Florisil demonstrated excellent analytes uptake capability as the extractant phase, with suitable selectivity for treating complex sediment samples. Under defined extraction conditions, the MSPD–GC–MS/MS method demonstrated robustness in the n inter-day analysis of sediments from different sources, providing limit of quantifications (LOQs) between 5 and 15 ng/g, linear responses in the range between LOQs and 150 ng/g, extraction recoveries of 71%–106%, and precision, assessed as relative standard deviation below 20%. The MSPD significantly reduced samples and solvents’ consumption, providing critical environmental gains compared to traditional extraction methods like Soxhlet. Finally, the method was applied to analyze sediment samples from three different collection areas of the Subachoque River (Cundinamarca, Colombia), demonstrating a fast, efficient, confident, and profitable analytical tool for pollution control and monitoring in environmental samples. The method allowed us to determine the current use in Colombia of banned pesticides under the 2001 Stockholm Convention.  相似文献   

14.
Effluent from wastewater treatment plants have been identified as an important source of micro-organic contaminants in the environment. An online high-performance liquid chromatography–heated electrospray ionization tandem mass spectrometric method was developed and validated for the determination of basic pesticides in effluent wastewaters. Most available methods for pesticide analysis of wastewater samples are time-consuming, require complex clean-up steps and are difficult to automate. The method developed used a simple solid-phase extraction clean-up for salt and lipid reduction. On-line sample pre-concentration was performed using a reversed phase (C18) column, and analytes were separated by back-flushing onto an analytical column (C8) with detection using QqQ MS. An option to increase MS resolution was exploited to minimize interference from endogenous compounds in the matrix. A better than unit mass resolution was used (Q1 full width half maximum (FWHM) = 0.2 Da and Q3 FWHM = 0.7 Da), which was as rugged as a unit resolution method, and improved signal/noise and better detection limits were achieved for the targeted basic pesticides. This method was applied to the determination of 11 pesticides, including methoxytriazine, chlorotriazines, chloroacetanilides, phenylurea and carbamate pesticides. The percentage recovery values for these pesticides using the online trapping column were within the range, 73–95%, with relative standard deviation (RSD) values <8.9%. The highest concentrations of these pesticides in wastewater effluents in County Cork, Ireland, were simazine (0.51 μg/L), prometon (0.14 μg/L), diuron (0.21 μg/L) and atrazine (0.19 μg/L).  相似文献   

15.
A novel method, modified matrix solid-phase dispersion (MMSPD), has been developed for quantitative analysis of organophosphorus pesticide residues in soil. It was based on matrix solid-phase dispersion (MSPD) and continuous liquid-solid extraction (continuous LSE), using Florisil as sorbent and dichloromethane as the recycling solvent. Two soils with different texture and physicochemical properties were studied to validate the method. The effect of residence time of pesticides in soil was also studied. MMSPD was compared with MSPD and continuous LSE respectively. Determination was carried out by gas chromatography with nitrogen-phosphorus detection (GC-NPD). The method gave recoveries ranging from 72–105% with relative standard deviations (RSDs) lower than 15% for the pesticides studied. The limits of detection (LODs) ranged from 0.1 to 0.6 ng g−1. Two pesticide residues have been detected in real soil samples from Fujian, China, using MMSPD. The pesticides were confirmed by gas chromatography-mass spectrometry (GC-MS) in a selected-ion monitoring (SIM) mode. Revised: 4 and 9 April 2006  相似文献   

16.
A method for simultaneous determination of flumequine (FLM), oxolinic acid (OXO), sarafloxacin (SAR), danofloxacin (DAN), enrofloxacin (ENR), and ciprofloxacin (CIP) in tilapia (Orechromis niloticus) fillets, using liquid chromatography-tandem mass spectrometry (LC-ESI-MS-MS QToF) is presented. The quinolones were extracted from the food matrix with a solution of 10% trichloroacetic acid-methanol (80:20 v/v) with ultrasonic assistance. Clean-up of the extract solution was performed by using polymeric solid-phase extraction cartridges. The LC separation was carried out on an octadecyl hybrid silica column (C18, 150 mm × 3 mm, 5 μm). The column temperature was set at 30 °C, and gradient elution (0.2 mL min−1) was performed using water and acetonitrile, both containing 0.1% of acetic acid, as mobile phase components. The analytes were ionized using electrospray in the positive polarity mode. The following analytical results were obtained: linearity was about 0.99 for all the quinolones; intra and inter-assay precision (RSD%) were lower than 12.7 and 20%, respectively; and recoveries were from 89 to 112%. The quantitation limits were below the maximum residue limits established for the analytes. The method is suitable for the determination of quinolone residues in fish fillets and the QToF technique made it possible to obtain m/z ratios with less than 10 ppm of error for each analyte.  相似文献   

17.
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72–100% for table grapes and 66–105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64–75% and 58–66%, respectively). Limits of detection (LODs) were in the range 0.651–5.44 μg/kg for table grapes and 0.902–6.33 μg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).  相似文献   

18.
A sensitive, specific and efficient high-performance liquid chromatography-tandem mass spectrometry assay for the simultaneous determination of vincristine and actinomycin-D in human dried blood spots is presented. Dried blood spots were punched out of a collection paper with a 0.25-in.-diameter punch. The analytes were extracted from the punched-out disc using sonication during 15 min in a mixture of acetonitrile–methanol–water (1:1:1, v/v/v) containing the internal standard vinorelbine. Twenty-microlitre volumes were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm ID Xbridge C18 column using elution with 1 mM ammonium acetate–acetonitrile (70:30, v/v) adjusted to pH 10.5 with ammonia and run in a gradient with methanol at a flow rate of 0.4 mL/min. HPLC run time was 6 min. The assay quantifies vincristine from 1 to 100 ng/mL and actinomycine-D from 2 to 250 ng/mL using a blood sample obtained by a simple finger prick. Validation results demonstrate that vincristine and actinomycin-D can be accurately and precisely quantified in human dried blood spots with the presented method. The assay can now be used to support clinical pharmacologic studies with vincristine and actinomycin-D.  相似文献   

19.
A cloud-point extraction (CPE) method using Triton X-114 non-ionic surfactant was developed for the extraction and preconcentration of carbamate insecticide residues (i.e., methomyl, propoxur, carbofuran, carbaryl, isoprocarb, and promecarb) in fruit samples. The optimum conditions of CPE were 1.5% (w/v) Triton X-114, 7.0% (w/v) NaCl and 20 min equilibrated at 45 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 270 nm, under gradient separation using methanol and 0.1% (v/v) acetic acid. Under the study conditions, six carbamate insecticides were successfully separated within 27 min. Good reproducibility was obtained with the relative standard deviation of <3% for retention time and <9% for peak area. Limits of detection in the studied fruit samples were in the range of 0.1–1.0 mg kg−1. No carbamate insecticides were detected in the studied fruit samples. The high recoveries of the spiked fruit samples were obtained in the range 80.0–107%. The CPE method has been shown to be a potential useful methodology for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environmental friendly.  相似文献   

20.
A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0–8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI24 ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号