首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis and applications of biscyclic phosphorus flame retardants   总被引:1,自引:0,他引:1  
The influence of structural effects of organo-phosphorus flame retardants (FRs) on their flame retardant action was investigated. A series of spirobisphosphorus compounds including 3,9-dibutyl-3,9-dioxo-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane were prepared using various synthetic methods such as the Arbuzov reaction. The chemical structure of the product was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that these cyclic phosphorus compounds show a single step degradation in the range of 250-400 °C and act in the gas phase rather than in the condensed phase. The obtained products were blended with an acrylonitrile-butadiene-styrene copolymer (ABS) or polycarbonate (PC) and their flame retardant behavior was evaluated using a UL-94 vertical test. V-0 ratings are achieved at 15-35 wt% loading of FR for ABS and at a much lesser amount of loading for PC. In both cases, it is apparent that the flame retardancy is strongly dependent on the P content of the flame retardant.  相似文献   

2.
In order to prepare halogen-free flame-retardant glass-fiber-reinforced poly(ethylene terephthalate) (FR-GF-PET), a novel flame retardant containing three flame-retardant elements, P, N and S, was synthesized by melt condensation reaction. Its chemical structure was characterized by FT-IR and 1H NMR spectra. FR-GF-PET was prepared by melt-mixing the flame retardant with GF-PET. The effects of the flame retardant on the flammability and thermally decomposing behaviors of GF-PET were studied via LOI, UL-94 and TGA tests. The results showed that despite a negative effect on the thermal stability of GF-PET, the incorporation of the flame retardant improved the flame retardancy of GF-PET largely. The LOI values of GF-PET increase linearly with the increase of flame retardant content. The GF-PET passed the V-0 rating in UL-94 tests when 15 wt% of the flame retardant was added to GF-PET. An interesting phenomenon was found, that is, with the increase of flame retardant content, the flame retardancy of the system increased but the char yield decreased, which was explained according to the evidences of XPS tests and the kinetics of thermally decomposing reaction.  相似文献   

3.
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect.  相似文献   

4.
A series of flame retarded epoxy resins (EP) was prepared with a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS). The flame retardancy of these EPs was tested by the LOI, UL-94, which indicates that DOPO-POSS has meaningful effects on the flame retardancy of EP composites. 2.5 wt.% DOPO-POSS incorporation into epoxy resin (EP-2.5), results in a LOI value 30.2 and UL-94 V-1 (t1 = 8 s and t2 = 3 s) rating. Moreover, self-extinguishing effect through the pyrolytic gases spurt is observed in UL-94 test for the EP-2.5. The pyrolytic gases and thermal stability of epoxy resins with and without DOPO-POSS were detected by TGA-FTIR under air atmosphere. Releases of gaseous species are found to be similar for the pure EP and EP-2.5. The details of fire behaviour, such as TTI, HRR, p-HRR, TSR, SEA, COPR, CO2PR, and TML, were tested by cone calorimeter. It is notable that 2.5 wt.% DOPO-POSS could make COPR and CO2PR reach a maximum, which could explain the blowing-out extinguishing effect.  相似文献   

5.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

6.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

7.
Synthesis and performance of cyclic phosphorus-containing flame retardants   总被引:2,自引:0,他引:2  
A series of organo-cyclic phosphorus compounds were synthesized in an attempt to find an efficient flame retardant (FR) for acrylonitrile-butadiene-styrene (ABS). The success of synthesis was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that cyclic phosphorus compounds synthesized in this study show almost one step degradation between 250 and 400 °C and are believed to work in the vapour phase rather than in the condensed phase. From UL-94 test, V-0 rating was achieved at 15-35 wt% loading of cyclic or cyclic alkyl phosphonate FR and no rating at 35 wt% loading of cyclic phosphate for ABS. On the other hand, a much lower loading (7.5%) was needed to obtain V-0 rating for polycarbonate when 3,9-diphenyl-3,9-dioxa-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane (PBPP) was added as FR. All the results show that the flame retarding effect is strongly dependent on the P content of the FR incorporated. The flame retardant mechanism of cyclic phosphorus compounds is also discussed.  相似文献   

8.
A series of organo phosphorus flame retardants (FR) based on cyclic phosphates were synthesized in an attempt to find an efficient FR for polycarbonate (PC) and acrylonitrile-butadiene-styrene copolymer (ABS). The success of synthesis was confirmed by FT-IR and 1H and 31P NMR. Their thermal stability and flame-retarding efficiency as a single component additive were investigated and compared with those of aromatic based phosphate, resorcinol bis(diphenyl phosphate) (RDP). Thermogravimetric analysis (TGA) results reveal that cyclic phosphates synthesized in this study show more than one-step degradation and act in the condensed phase mechanism rather than in the vapor phase mechanism. Flame-retarding efficiency was evaluated by UL-94 test method. V-0 rating was achieved at 3-5 wt% of FR loading for PC, which is better than the FR performance of RDP. The high P-OH generation tendency is responsible for the better FR performances of these compounds. The degradation path is also discussed.  相似文献   

9.
The flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus (MRP) in halogen-free flame retardant ethylene vinyl acetate (EVA) composite have been studied by cone calorimeter test (CCT), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 test. The results obtained by comparing the flame retardancy of hydrotalcite with magnesium hydroxide (MH) and aluminium hydroxide (AH) for their EVA composites showed that hydrotalcite has higher flame retardant effect than MH and AH at the same loading level. The CCT tests indicated that the heat release rate (HRR) and mass loss rate (MLR) of EVA composite blended with hydrotalcite greatly decreased compared with those blended with MH and AH. The LOI values of EVA/hydrotalcite composites are 3-4% higher than those of the corresponding MH composites at 40-60 wt% loading levels, and 6% higher than that of the corresponding AH composite at 40 wt% loading level. Moreover, the addition of a given amount of MRP apparently resulted in the increase of LOI value and decrease of the HRR and MLR as well the loading of hydrotalcite in EVA blend while keeping the V-0 rating in UL-94 test. However, the smoke release increased during the combustion of EVA/hydrotalcite blend containing MRP.  相似文献   

10.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

11.
A novel efficient halogen-free flame retardant system for polycarbonate   总被引:2,自引:0,他引:2  
A novel silicon- and phosphorus-containing flame retardant, poly (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide siloxane), P(DOPO-VTES) was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) and vinyltriethoxy silane(VTES). Its chemical structure was confirmed by FTIR. The thermal gravimetrical analysis (TGA) showed that P(DOPO-VTES) had good thermal stability and a high of char yield (86.31%) at 700 °C in nitrogen atmosphere. Its XRD patterns showed that this compound had a certain ordered structure. P(DOPO-VTES) was blended with polycarbonate (PC) together with montmorillonite(MMT) to prepare a series of organic-inorganic hybrids of flame retardant (PC)/P(DOPO-VTES)/MMT via melt blending. The thermal degradation behavior and flame retardancy of those hybrids were investigated with TGA, limiting oxygen index (LOI), vertical burning test (UL-94), and cone calorimeter. The LOI value of the flame-retardant PC systems could reach a maximal value of 32.8 when the content of P(DOPO-VTES) was 5 wt%. When 2 wt% MMT was added into the PC/5%P(DOPO-VTES) system, the UL-94 rating reached V-0. The possible flame retardant mode of MMT was studied via the dynamic rheological properties of the systems and the morphology of the chars remaining after the LOI test and the cone calorimeter test.  相似文献   

12.
邓聪  王玉忠 《高分子科学》2014,32(1):98-107
Aluminum hypophosphite (AP) was used to prepare flame-retarded thermoplastic polyurethane (FR-TPU) composites, and their flame retardancy, thermal degradation and mechanical properties were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and tensile test. TPU containing 30 wt% of AP could reach a V-0 rating in the UL-94 test, and its LOI value was 30.2. TGA tests revealed that AP enhanced the formation of residual chars at high temperatures, and slightly affected the thermal stability of TPU at high temperatures. The combustion tests indicated that AP affected the burning behavior of TPU. The peak of heat release rate (PHRR), total heat release (THR) and mass loss rate (MLR) greatly reduced due to the incorporation of AP. The tensile test results showed that both the tensile strength and the elongation at break slightly decreased with the addition of AP. The digital photos and SEM micrographs vitrified that AP facilitated the formation of more compact intumescent char layer. Based on these results mentioned above, the flame-retarding mechanism of AP was discussed. Both the self-charring during the decomposing process of AP and its facilitation to the charring of TPU led to the great improvement in the flame retardancy of TPU.  相似文献   

13.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   

14.
A novel phosphazene cyclomatrix network polymer poly(cyclotriphosphazene-co- pentaerythritol) (PCPP) was synthesized and characterized based on an attempt to look for a high efficient and green intumescent flame retardant. A series of flame retardant polylactide (FR-PLA) composites containing PCPP were prepared by melt blending method. Thermal degradation behavior and combustion properties of FR-PLA composites were evaluated through thermogravimetric analysis, UL-94 experiments, limiting oxygen index and cone calorimeter tests. It is found that the weight of residues for FR-PLA composites improved greatly with the addition of PCPP. Additionally, PCPP show a high flame retardant efficiency for PLA, UL-94 V-0 could be passed only containing 5 wt% PCPP. Fourier transform infrared spectra and scanning electronic microscopy investigations reveal that the residual chars are compact and foaming containing P-O-C structure, which restrains the development of fire and increases the flame retardant properties.  相似文献   

15.
蔡绪福 《高分子科学》2013,31(10):1352-1358
A novel flame retardant (DAPSiO), containing silicon and nitrogen, was synthesized by using dichlorodiphenylsilane, γ-chloropropyl methyl dimethoxysilane and 1,2-ethanediamine. DAPSiO was used together with potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) to prepare a flame-retardant system for polycarbonate (PC). The structure of DAPSiO was characterized by Fourier transform infrared spectroscopy (FTIR), and 1H-NMR tests. Flammability and thermal behaviors of PC/KSS/DAPSiO systems were estimated by limited oxygen index (LOI), vertical burning test (UL-94) and thermogravimetric analysis (TGA) tests. The results showed that the flame retardancy and thermal stability of PC/KSS system were improved with the addition of DAPSiO. When 1 wt% DAPSiO and 0.5 wt% KSS were incorporated, the LOI value of PC was found to be 44, and class V-0 of UL-94 test was passed. The scanning electron microscopy (SEM) and FTIR indicated that PC/KSS/DAPSiO system held a more cohesive and denser char structure when compared with pure PC and PC/KSS system.  相似文献   

16.
A novel flame retardant system composed of nano-kaolin and nano-HAO (nano-sized hydroxyl aluminum oxalate) was used for flame retarding the low density polyethylene (LDPE)/ethylene propylene diene rubber (EPDM) blends. Results of fire testing showed that nano-kaolin and nano-HAO exhibited excellent synergistic effects on the flame retardancy of the LDPE/EPDM composites. When 12 wt% nano-kaolin took the place of 12 wt% nano-HAO in the composites, the LOI of the composites increased from 31.0% to 35.5% and the composites could meet the UL94V-0 standard. Through thermogravimetric and differential thermal analysis (TG-DTA) it was found that nano-HAO mainly affected the degradation of the experimental composites chemically. Meanwhile, results of scanning electronic microscope (SEM) and Fourier transformation infrared spectra (FTIR) of the composites on the char layer revealed that nano-kaolin mainly affected the transfer process physically by aggregating with nano-HAO and thus the synergistic effect on flame retardancy appeared.  相似文献   

17.
Novel intumescent flame retardant polypropylene (PP) composites were prepared based on a char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP). The thermal and flame retardancy of flame retardant PP composites were investigated by limiting oxygen index, UL-94 test, cone calorimetry, thermogravimetric analysis, scanning electron micrograph, and water resistance test. The results of cone calorimetry show that the flame retardant properties of PP with 30 wt% novel intumescent flame retardants (CFA/Si-MCAPP = 1:3) improve greatly. The peak heat release rate and total heat release decrease, respectively, from 1,140.0 to 156.8 kW m?2 and from 96.0 to 29.5 MJ m?2. The PP composite with CFA/Si-MCAPP = 1:3 has the excellent water resistance, and it can still obtain a UL-94 V-0 rating after 168 h soaking in water.  相似文献   

18.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane and diphenylsilanediol through solution polycondensation and it was added to polycarbonate (PC). The structure and thermal properties of PSiN were characterized by fourier transform infrared spectroscopy and thermogravimetric analysis (TG) tests. The effect of PSiN on the flame retardancy and thermal behaviors of PC was investigated by limited oxygen index (LOI), vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and the thermal stability of PC are improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% diphenylsulfone sulfonate (KSS) are incorporated, the LOI value of PC is found to be 46, and class V-0 of UL-94 test is passed. The char structure observed by scanning electron microscopy indicated that the surface of the char for PC/KSS/PSiN system holds a firmer and denser char structure when compared with neat PC and PC/KSS system.  相似文献   

19.
The triazine-based charring agent (CFA) with perfect charring ability was synthesized and characterized. The synergistic effects between CFA and aluminum phosphinate (AlPi) on flame retardancy, thermal degradation, and flammability properties of thermoplastic polyester-ether elastomer (TPEE) were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test (CCT), thermogravimetric analysis (TGA), laser Raman spectroscopy (LSR) and scanning electron microscopy (SEM). The results from UL-94 test showed that, by compounding 14 wt% AlPi and 4 wt% CFA with TPEE, the LOI value reached 28.5% and the UL-94 rating reached V-0 (1.6 mm). TGA results indicated that there is good synergistic charring ability between CFA and AlPi, especially the increased residues at high temperature (T > 700 °C). The CCT test results showed that CFA could change the combustion behavior of TPEE and effectively accelerate the formation of expanded carbon layers. The residues after combustion were measured by LRS and SEM, demonstrating that CFA can promote the formation of dense and stable carbon layers during the combustion, which could inhibit the melt dropping and improve the fire retardancy of TPEE composites. Thus, CFA was a promising synergistic agent in halogen-free flame retardant TPEE.  相似文献   

20.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号