首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
Processes which occur in microwave discharges of dilute mixtures of SF6 and O2 in He have been examined using a flow reactor sampled by a mass spectrometer. Two classes of experiments were performed. In the first set of experiments, mixtures containing 6×1011 cm–3 SF6, 6×1016 cm–3 He, and O2 in the range (0–3.6)×1013 cm–3 were passed through a 20-W 2450-MHz microwave discharge. The gas mixtures arriving at a sample point downstream from the discharge were examined for SF6, SF4, SOF2, SOF4, SO2F2, SO2, F, and O. In the second class of experiments, rate coefficients were measured for the reactions of SF4 with O and O2 and for the reaction of SF with O. The rate coefficient for the reaction of SF with O was found to be (4.2±1.5)×10–11 cm–3 s–1. SF4 was found to react so slowly with both oxygen atoms and oxygen molecules that only upper limits could be placed on the rate coefficients for these reactions. These values were 2×10–14 cm3 s–1 and 5×10–15 cm3 s–1 for reactions with O and O2 respectively. The observed distribution of products from the discharged mixtures is discussed in terms of the measured rate coefficients.  相似文献   

2.
Reactions of both SF4 and SF5 with F have been studied at 295 K in a gas-flow reactor sampled by a mass spectrometer. The rate coefficient for the combination reaction of F with SF4 to produce SF5 was found to increase from (0.9 to 3.0)×10–12 cm3 s–1 when the helium bath gas number density was increased from (2 to 26)×1016 cm–3. The values obtained here are three orders of magnitude higher than a recent estimate of the high-pressure value based on the modelling of photochemical studies. The experimental results have been compared with RRKM and master equation calculations in which a simplified Gorin model has been used to determine the structure of the transition state. These calculations show that reasonable agreement can be obtained between the experimental data and the calculation if a small (2 KJ/mol) activation energy is assumed. The rate coefficient for the reaction between SF5 and F to produce SF6 was found to be independent of helium bath gas number density within the range given above. The value obtained for the rate coefficient was 9×10–12 cm3 s–1 with an uncertainty of a factor of 2. This value is close to that of 1×10–11 cm3 s–1 computed from the simplified Gorin model and to the value of 1.7×10–11 cm3 s–1 deduced from modelling of photochemical experiments.  相似文献   

3.
Reaction rate coefficients have been measured at 295 K for both CF3 and CF2 with atomic and molecular fluorine. The reaction between CF3 and F was studied over a gas number density range of (2.4–23)×1016 cm–3 with helium as the bath gas. The measured rate coefficient increased from (1.1–1.7)×10–11 cm3 s–1 as the gas number density increased over this range. In contrast to this relatively small change in rate coefficient with gas number density, the rate coefficient for CF2+F increased from (0.4–2.3)×10–12 cm3 s–1 as the helium gas number density increased from (3.4–28.4)×1016 cm–3. Even for the highest bath gas number density employed, the rate coefficient was still more than an order of magnitude lower than earlier measurements of this coefficient performed at comparable gas number densities.Both these association reactions are examined from the standpoint of the Gorin model for association of radicals and use is made of unimolecular dissociation theory to examine the expected dependence on gas number density. The calculations reveal that CF3+F can be explained satisfactorily in these terms but CF2+F is not well described by the simple Gorin model for association.CF3 was found to react with molecular fluorine with a rate coefficient of (7±2)×10–14 cm3 s–1 whereas only an upper limit of 2×10–15 cm3 s–1 could be placed on the rate coefficient for the reaction between CF2 and F2. The values obtained for this set of reactions mean that the reaction between CF3 and F will play an important role in plasmas containing CF4. The high rate coefficient will mean that, under certain conditions, this particular reaction will control the amount of CF4 consumed. On the other hand, the much lower rate coefficient for reactions between CF2 and F means that CF2 will attain much higher concentrations than CF3 in plasmas where these combination reactions are dominant.  相似文献   

4.
Dissociative and nondissociative electron attachment in the electron impact energy range 0–14 eV are reported for SOF2 SOF4, SO2F2, SF4, SO2, and SiF4 compounds which can be formed by electrical discharges in SF6. The electron energy dependences of the mass-identified negative ions were determined in a time-of-flight mass spectrometer. The ions studied include F and SOF 2 –* from SOF2; SOF 3 and F from SOF4; SO2F 2 –* , SO2F, F 2 , and F from SO2F2; SF 4 –* and F from SF4; O, SO, and S from SO2; and SiF 3 and F from SiF4. Thermochemical data have been determined from the threshold energies of some of the fragment negative ions. Lifetimes of the anions SOF 2 –* , SO2F 2 –* , and SF 4 –* are also reported.  相似文献   

5.
The plasma chemistry of SF6/O2 mixtures is particularly complicated because of the large number of possible reactions. Over a wide range of conditions, products including SF4, SOF4, SOF2, and SO2F2 can be formed but thre is considerable uncertainty about the major reactions which contribute to the formation of these species. In this work reactions of oxygen atoms with SOF2 and fluorine atoms with SOF2 and SO2 have been studied in order to determine the principal sources of SO2F2 in these plasmas. Reactions were studied at 295 K in a gas flow reactor sampled by a mass spectrometer. No reaction could be detected between oxygen atoms and SOF2, which for the conditions employed, means that the upper limit for the reaction rate coefficient is 1×10–14 cm3 sec–1. The reaction of fluorine atoms with SOF2 was studied with the helium bath gas number density ranging from 3.1×1016 to 2.0×1017 cm–3. Within this range the rate coefficient increased with increasing [He] from (4.1 to 10.8)×10–14 cm3 sec–1. SO2 was found to react with fluorine atoms with a rate coefficient which appeared to be independent of the helium bath gas number density over the range given above. The possibility that this reaction occurred entirely on the walls of the reactor is discussed.  相似文献   

6.
By-product formation in spark breakdown of SF6/O2 mixtures   总被引:2,自引:0,他引:2  
The yields of SOF4, SO2F2, SOF2, and SO2 have been measured as a function of O2 content in SF6/O2 mixtures, following spark discharges. All experiments were made at a spark energy of 8.7 J/spark, a total pressure of 133 kPa, and for O2 additions of 0, 1, 2, 5, 10, and 20% to SF6. Even for the case of no added O2, trace amounts of O2 and H2O result in the formation of the above by-products. However, addition of O2 significantly increases the yields of SOF4 and SO2F2, while SOF2 is only slightly affected. The net yields for SOF4 and SO2F2 formation range from 0.18×10–9 and 0.64×10–10 mol·J–1, respectively, at 1% O2 content to 10.45×10–9 and 7.15×10–10 mol·J–1, respectively, at 20% O2 content. The mechanism for SOF4 production appears to involve SF4, an important initial product of SF6, as a precursor. Comparison of the SOF4 and SO2F2 yield from spark discharges (arc and corona) shows that the yields from other discharges (arc and corona) shows that the yields can vary by at least three orders of magnitude, depending on the type of discharge and on other discharge parameters.  相似文献   

7.
The rate constant value of k 1 = (6.05 ± 0.20)×109 cm3 mol–1 s–1 (with ± 1 error) has been determined for the reaction OH + CH2F2 (1) by applying the discharge-flow/resonance-fluorescence method at 298 K.  相似文献   

8.
The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF 6 +SOF4SOF 5 +SF5 have been measured. ForT<270 K,k approaches a constant of 2.1×10–9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [–3.3 lnT(K)]. ForE/Pk has a constant value of about 2.5×10–10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)7.0×10–10 exp (–0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF 6 +SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF 6 is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF 6 is efficiently deactivated by other reactions, and the influence of SF 6 +SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis.  相似文献   

9.
The absolute yields of gaseous oxyfluorides SOF2, SO2F2, and SOF4 from negative, point-plane corona discharges in pressurized gas mixtures of SF6 with O2 and H2O enriched with18O2 and H2 18O have been measured using a gas chromatograph-mass spectrometer. The predominant SF6 oxidation mechanisms have been revealed from a determination of the relative18O and16O isotope content of the observed oxyfluoride by-product. The results are consistent with previously proposed production mechanisms and indicate that SOF2 and SO2F2 derive oxygen predominantly from H2O and O2, respectively, in slow, gas-phase reactions involving SF4, SF3, and SF2 that occur outside of the discharge region. The species SOF4 derives oxygen from both H2O and O2 through fast reactions in the active discharge region involving free radicals or ions such as OH and O, with SF5 and SF4.  相似文献   

10.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
The etching rates and reaction products of refractory metals (W, Mo, and Ta) and silicon have been studied in a SF6-O2 r.f. plasma at 0.2 torr. The relative concentrations of WF6 and WOF4 and the intensities of the WF n + (n=3–5), WOF m + (m=1–3), MoF n + , and MoF m + ions have been measured by mass spectroscopy. An analysis of the neutral composition of the plasma during etching of these metals and a comparison with the results obtained for silicon show that at least two species are involved for W and Mo etching: fluorine and oxygen atoms. A reaction scheme is proposed.  相似文献   

12.
The production ofSOF 4 initiated by the reaction of F atoms withSOF 2 has been studied in a gas-flow reactor at 295 K for helium bath gas number densities in the range (3.0–27.0)×1016 cm–3. The effect of O atoms on the formation ofSOF 4 has been analyzed in terms of the competing reactionsSOF 3+FSOF4 andSOF 3+OSO 2 F 2+F. This analysis leads to the conclusion that the rate coefficients for these two processes are equal within an uncertainty of about 50%. Furthermore, both experiment and calculations indicate that the rate coefficient for reactions between F atoms andSOF 3 is close to its high-pressure limit under the conditions employed. The experiments set a lower limit on this rate coefficient of 5×10–11 cm3 s–1, while calculations based on unimolecular rate theory suggest that it may be greater than 1×10–10 cm3 s–1. These results make it clear that the two reactions shown above cannot explain the relative abundances ofSOF 4 andSO 2 F 2 which are observed inSF 6/O 2 plasmas. This suggests thatSF 2 is a major precursor in the sequence of reactions following the dissociation ofSF 6.  相似文献   

13.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

14.
Sr2CeO4 has been prepared by sol-combustion and co-precipitate routes and the resulting products have been characterized by XRD analysis. The molar enthalpies of solution of Sr2CeO4(s), Sr(NO3)2(s) and Ce(NO3)3·6H2O(s) in 0.150 dm–3 of (4.41 mol dm–3 H2O2+4.23 mol dm–3 of HNO3) solvent as well as the molar enthalpies of solution of Sr2CeO4(s), SrCl2(s) and CeCl3(s) in 0.150 dm3 of (1.47 mol dm–3 H2O2+3.05 mol dm–3 of HClO4) solvent have been measured using an isoperibol type calorimeter. From these results and other auxiliary data, the standard molar enthalpy of formation of Sr2CeO4 has been derived to be –2277.3±3.1 kJ mol–1 at 298.15 K. This is the first reported thermodynamic data on this compound.  相似文献   

15.
Discrete electron-molecule processes relevant to SF6 etching plasmas are examined. Absolute, total scattering cross sections for 0.2–12-eV electrons on SF6, SO2, SOF2, SO2F2, SOF4, and SF4, as well as cross sections for negative-ion formation by attachment of electrons, have been measured. These are used to calculate dissociative-attachment rate coefficients as a function ofE/N for SF6 by-products in SF6.  相似文献   

16.
The emission band spectra of S, molecule (B3 u X3 g transition) and of SO molecule (A3 X3) were detected in SF6 and SF6-O2 rf discharges. It has been observed that the presence of a material which can be etched by SF6 products considerably enhances the density of S2 in the reactor. By means of mass spectrometry it has been shown that the m/e =83 mu signal assigned to S2F4 ions evolves exactly in the same manner as the S2 band intensity during the etching of Si or W in SF6-O2 discharge. A reaction scheme involving S2F radicals is proposed to explain these experimental results.  相似文献   

17.
It has been found that treatment of SF5-alkyl halides, especially SF5(CH2)2Br, with silver salts such as CH3C(O)OAg, p-CH3C6H4SO3Ag, CF3SO3Ag and AgNO3 provides convenient pathways for preparing the following ester compounds: SF5CH2CH2R (R = CH3COO, TosO, CF3SO3, NO3), SF5(CH2)3OTos, and SF5(CF2)4(CH2)2OAc. Important derivatives prepared from these esters include SF5(CH2)2OH; SF5(CF2)4(CH2)2OH. Several alkenes SF5C(Br)CH2 and SF5CH2(COOCH3)CCHC(O)OCH3 are obtained using silver salts. The use of alkali metals salts with SF5(CH2)3Br is studied and yields SF5(CH2)3I; also, a pathway has been developed that extends for SF5(CH2)3− the chain by two-carbon atoms and also produces the first SF5-containing malonic acid.  相似文献   

18.
UV spectra of SF5 and SF5O2 radicals in the gas phase at 295 K have been quantified using a pulse radiolysis UV absorption technique. The absorption spectrum of SF5 was quantified from 220 to 240 nm. The absorption cross section at 220 nm was (5.5 ± 1.7) × 10−19 cm2. When SF5 was produced in the presence of O2 an equilibrium between SF5, O2, and SF5O2 was established. The rate constant for the reaction of SF5 radicals with O2 was (8 ± 2) × 10−13 cm3 molecule−1 s−1. The decomposition rate constant for SF5O2 was (1.0 ± 0.5) × 105 s−1, giving an equilibrium constant of Keq = [SF5O2]/[SF5][O2] = (8.0 ± 4.5) × 10−18 cm3 molecule−1. The SF5 O2 bond strength is (13.7 ± 2.0) kcal mol−1. The SF5O2 spectrum was broad with no fine structure and similar to the UV spectra of alkyl peroxy radicals. The absorption cross section at 230 nm was found to (3.7 ± 0.9) × 10−18 cm2. The rate constant of the reaction of SF5O2 with NO was measured to (1.1 ± 0.3) × 10−11 cm3 molecule−1 s−1 by monitoring the kinetics of NO2 formation at 400 nm. The rate constant for the reaction of F atoms with SF4 was measured by two relative methods to be (1.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
A series of reactions between SF5CF2CF2I and SF5(CF2)4I with F2CCF2 was carried out in an effort to find the most effective methods for chain-extension. Also, for the first time, SF5(CF2)8I and SF5(CF2)10I have been prepared and isolated. The reaction conditions for the addition of H2CCH2 were also investigated. A determination of the crystal structure of the SF5(CF2)4CH2CH2I has been carried out: the crystal system is monoclinic, with space group P2(1)/n and a=23.465(5) Å; b=6.0971(12) Å; c=44.892(9) Å; α=90°; β=99.38(3)°; γ=90°; Z=20.  相似文献   

20.
We have analyzed decay kinetics of CF2 radicals in the afterglow of low-pressure, high-density C4F8 plasmas. The decay curve of CF2 density has been approximated by the combination of first- and second-order kinetics. The surface loss probability evaluated from the frequency of the first-order decay process has been on the order of 10–4. This small surface loss probability has enabled us to observe the second-order decay process. The mechanism of the second-order decay is self-association reaction between CF2 radicals (CF2+CF2C2F4). The rate coefficient for this reaction has been evaluated as (2.6–5.3)×10–14 cm3/s under gas pressures of 2 to 100 mTorr. The rate coefficient was found to be almost independent of the gas pressure and has been in close agreement with known values, which are determined in high gas pressures above 1 Torr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号