首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
The morphology of and electron tunneling through single and cluster cytochrome c molecules deposited on self-assembled dodecanthiol monolayer film on a gold substrate have been studied experimentally using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. STM images of a single cytochrome c molecule revealed a globular structure with a diameter of 4 nm and height of 1.5 nm. A spectroscopic study obtained by recording tunneling current–bias voltage (VI) curves revealed that the STM current increases stepwise at asymmetric threshold sample bias voltages of +100 mV and –200 mV.  相似文献   

2.
Scanning probe microscopy study of exfoliated oxidized graphene sheets   总被引:1,自引:0,他引:1  
Exfoliated oxidized graphene (OG) sheets, suspended in an aqueous solution, were deposited on freshly cleaved HOPG and studied by ambient AFM and UHV STM. The AFM images revealed oxidized graphene sheets with a lateral dimension of 5–10 μm. The oxidized graphene sheets exhibited different thicknesses and were found to conformally coat the HOPG substrate. Wrinkles and folds induced by the deposition process were clearly observed. Phase imaging and lateral force microscopy showed distinct contrast between the oxidized graphene and the underlying HOPG substrate. The UHV STM studies of oxidized graphene revealed atomic scale periodicity showing a (0.273 ± 0.008) nm × (0.406 ± 0.013) nm unit cell over distances spanning few nanometers. This periodicity is identified with oxygen atoms bound to the oxidized graphene sheet. I(V) data were taken from oxidized graphene sheets and compared to similar data obtained from bulk HOPG. The dI/dV data from oxidized graphene reveals a reduction in the local density of states for bias voltages in the range of ±0.1 V.  相似文献   

3.
The investigations on the properties of HfO2 dielectric layers grown by metalorganic molecular beam epitaxy were performed. Hafnium-tetra-tert-butoxide, Hf(C4H9O)4 was used as a Hf precursor and pure oxygen was introduced to form an oxide layer. The grown film was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and capacitance–voltage (CV) and current–voltage (IV) analyses. As an experimental variable, the O2 flow rate was changed from 2 to 8 sccm while the other experimental conditions were fixed. The XPS spectra of Hf 4f and O 1s shifted to the higher binding energy due to the charge transfer effect and the density of trapped charges in the interfacial layer was increased as the oxygen flow rate increased. The observed microstructure indicated the HfO2 layer was polycrystalline, and the monoclinic phases are the dominant crystal structure. From the CV analyses, k = 14–16 and EOT = 44–52 were obtained, and the current densities of (3.2–3.3) × 10−3 A/cm2 were measured at −1.5 V gate voltage from the IV analyses.  相似文献   

4.
A method for evaluating a band offset of a heterojunction is proposed by measuring temperature dependence of current–voltage (IV) characteristics in triple-barrier resonant tunneling diodes (TBRTDs). The method was applied for investigating a conduction band offset by using GaAs0.25P0.75/GaAs TBRTDs with thin strain heterobarriers grown by MOCVD and ΔEc was estimated as 200–240 meV. In the strain-barrier TBRTDs, negative differential resistance was observed below 100 K.  相似文献   

5.
Mn/p-Si structures have been realised by electron beam evaporation of manganese on etched and cleaned p-Si wafers. Bilayer structures have been irradiated by swift heavy ions (of 100 MeV Fe7+ having a fluence of 1 × 1013 ions/cm2). The electronic transport features across the bilayer of the structure (i.e. IV characteristics across the Mn/p-Si interface) show a significant increase of current (by two orders of magnitude) for the irradiated ones as compared to un-irradiated ones. IV characteristics across the interface has also been recorded in presence of in-plane (i.e., along the plane of the interface) magnetic field which show a significant magnetic field sensitivity for the irradiated ones. The surface morphological studies from AFM show a granular structure with open face having micro-particles in it, prior to the irradiation and round shaped embedded granular structure after the irradiation. XRD data show the formation of manganese silicide (Mn5Si2). The results are understood in the realm of interfacial intermixing which is tailored by the swift heavy ion irradiation.  相似文献   

6.
The misfit layer compounds (LaS)1.14(NbS2)n (n=1, 2) and [(Pb,Sb)S]1.14NbS2 were examined by scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In these compounds the NaCl-type double MS (M=La, Pb, Sb) layers (Q layers) alternate with the NbS2 layers (H layers) made up of NbS6 trigonal prisms. It was possible to record AFM and STM images for only the H layers for (LaS)1.14(NbS2)n, but for both the H- and Q-layers for [(Pb,Sb)S]1.14NbS2. Partial and total electron density plots of the H and Q layers were calculated to interpret the observed STM and AFM images. The bright spots in the STM and AFM images of the H layer correspond to S atoms, and those of the Q layer to Pb and Sb atoms. The STM images for the Q layers of [(Pb,Sb)S]1.14NbS2 suggest that a short-range ordering of the Pb and Sb atoms occurs in the (Pb,Sb)S sheets of the Q layer.  相似文献   

7.
Detailed current–voltage–temperature (IVT) measurements were performed on the Schottky diodes fabricated on MOVPE-grown n-GaN layers. A large deviation from the thermionic emission (TE) transport was observed in the reverse IV curves with a large excess leakage. From the calculation based on the thermionic-field emission (TFE) model, it was found that the tunneling plays an important role in the carrier transport across the GaN Schottky barrier even for doping densities as low as 1×1017 cm−3. A novel barrier-modified TFE model based on presence of near-surface fixed charges or surface states is proposed to explain the observed large reverse leakage currents.  相似文献   

8.
The study of metallic carbonyl clusters as precursors in tailoring the heterogeneous metal catalysts has been of great importance. The catalytic nature of the adsorbed clusters in thin film form depends on the chemical properties of the substrate used. The metal-support interaction will determine various properties such as the surface morphology, adsorption features and the structural orientations. We report a scanning tunneling microscopy (STM) study of an osmium carbonyl cluster (Os3(CO)11(NCCH3)) adsorbed on highly oriented pyrolytic graphite (HOPG). STM measurements showed that the osmium carbonyl cluster interacts with HOPG in such a way that it adsorbs on the basal plane showing regular lattice structure, whereas the axial planes of the HOPG surface shows no ordered structure. The regular cluster lattice structure of the carbonyl cluster on the basal plane of the graphite has lattice parameters of a=1.4 nm and b=1.5 nm. We believe that the regular orientation of the cluster indicates a monolayer adsorption of the cluster on the graphite basal planes. Scanning tunneling spectroscopy (STS) measurements also indicated an insulating behavior for the cluster molecules on HOPG, with a significant energy gap value of ca. 300 mV. The cluster interaction at the active sites, i.e. axial planes of the graphite, was also observed by in situ STM measurements.  相似文献   

9.
D-H. Woo  Y-H. Yoon  I.C. Jeon 《Surface science》2007,601(6):1554-1559
We have studied the electron tunneling process through an electrochemical scanning tunneling microscopic (STM) junction formed by a gold tip and a gold electrode immersed in an inert NaClO4 solution. Current-distance-voltage characteristics of the tunneling process are examined by simultaneous measurement of tunneling current, voltage, and distance. The results indicate that the tunneling voltage across the junction changes with tunneling distance; however, tunneling conductance is an inverse exponential function of distance over the entire investigated range of tunneling current, voltage, and distance. The results provide clear evidence for the validity of a one-dimensional tunneling model for the aqueous tunneling process. Implications of the observation are mentioned with regard to the distance-dependent STM imaging and the origin of a low tunneling barrier height.  相似文献   

10.
The current–voltage (IV) and capacitance–voltage (CV) behaviour of different Si/Ge multilayers and SiGe single layers prepared on p-type Si substrates by magnetron sputtering and annealing, has been studied in the temperature range of 80–320 K by using Al Schottky contacts as test structures. Although a significant influence of the microstructure of the Si/Ge multilayers and SiGe layers was obtained on the electrical behaviour of the structures, the structures exhibited similar specific features.  相似文献   

11.
Interface properties of metal/n- and p-GaN Schottky diodes are studied by IVT and CVT measurements, and simulation of their characteristics. On the basis of the previously proposed “surface patch” model, the gross behavior of IVT characteristics, which includes Richardson plots together with temperature dependence of the effective Schottky barrier heights (SBHs) and n-values, can be well reproduced. Furthermore, the dependence of the true SBH on the metal work function was also deduced from high-temperature IV curves, giving S-values of 0.28 and 0.20 for n- and p-GaN samples, respectively, and the interface Fermi level tends to be pinned at a characteristic energy of about two-third of the bandgap.  相似文献   

12.
The exclusive use of the specularly reflected beam (the (0,0) spot) may be a more practical way of collecting data for a LEED IV structure analysis under certain experimental conditions. In this paper we discuss the special properties of the (0,0) spot intensity and test its sensitivity towards structural changes for the model system CO/Ni(1 1 1) within the framework of a R factor analysis. It is found that the (0,0) spot can, indeed, be used for a reliable structure determination if the energy range is increased by collecting data at different polar and azimuthal angles of incidence. The R factor contrast is, however, reduced with respect to a conventional LEED IV analysis.  相似文献   

13.
A sandwich device has been fabricated from DNA molecular film by solution processing located between Al and p-type silicon inorganic semiconductor. We have performed the electrical characteristics of the device such as current–voltage (IV), capacitance–voltage (CV) and capacitance–frequency (Cf) at room temperature and in dark. The DNA-based structure has showed the rectifying behavior. From its optical absorbance spectrum, it has been seen that DNA has been a semiconductor-like material with wide optical band energy gap of 4.12 eV and resistivity of 1.6 × 1010 Ω cm representing a p-type conductivity.  相似文献   

14.
Thin Ca films were evaporated on Si(1 1 1) under UHV conditions and subsequently annealed in the temperature range 200–650 °C. The interdiffusion of Ca and Si was examined by ex situ Auger depth profiling. In situ monitoring of the Si 2p core-level shift by X-ray photoemission spectroscopy (XPS) was employed to study the silicide formation process. The formation temperature of CaSi2 films on Si(1 1 1) was found to be about 350 °C. Epitaxial growth takes place at T≥400 °C. The morphology of the films, measured by atomic force microscopy (AFM), was correlated with their crystallinity as analyzed by X-ray diffraction (XRD). According to measurements of temperature-dependent IV characteristics and internal photoemission the Schottky-barrier height of CaSi2 on Si(1 1 1) amounts to qΦBn=0.25 eV on n-type and to qΦBp=0.82 eV on p-type silicon.  相似文献   

15.
HfO2 dielectric layers were grown directly on the p-type Si (1 0 0) by metalorganic molecular beam epitaxy (MOMBE). Hafnium tetra-butoxide was used as a Hf precursor and pure oxygen was introduced to form an oxide layer. The properties of the layers with different thicknesses were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and capacitance–voltage (CV) and current–voltage (IV) analyses. XRD and HRTEM results showed that the HfO2 films thinner than 12 nm were amorphous while the films thicker than 12 nm began to crystallize in the tetragonal and the monoclinic phases. The XPS spectra of O 1s show that the O---Si binding energies shifted to the lower binding energy with increasing the HfO2 layer thickness. Moreover, the snap back phenomenon is observed in accumulation capacitance. These changes are believed to be linked with the decomposition of SiO and the crystallization of HfO2 layer during the film growth.  相似文献   

16.
The interaction of SO2 with oxygen-sputtered Au(1 1 1) (θoxygen  0.35 ML) was studied by monitoring the oxygen and sulfur coverages as a function of SO2 exposure. The morphology of the sputtered Au is relatively smooth on a long length scale, but rough on a finer scale with islands averaging 15 nm. The rough surface is not stable to scanning with the STM. Two reaction regimes were observed: oxygen depletion followed by sulfur deposition. An enhanced, transient sulfur deposition rate is observed at the oxygen depletion point. This effect is specifically pronounced if the Au surface is continuously exposed to SO2. The enhanced reactivity towards S deposition seems to be linked to the presence of highly reactive, under-coordinated Au atoms. Adsorbed oxygen appears to stabilize, but also to block these sites. In absence of the stabilization effect of adsorbed oxygen, i.e. at the oxygen depletion point, the enhanced reactivity decays on a timescale of a few minutes. These observations shed a new light on the catalytic reactivity of highly dispersed gold nanoparticles.  相似文献   

17.
C. Maurel 《Surface science》2006,600(2):442-447
Light emitted in the tunneling junction of a scanning tunneling microscope has been used to establish the electrical characteristics of nanojunctions made of Au islands deposited on flat MoS2 surfaces. It is shown that these characteristics are those of rectifying contacts when the gold islands are isolated and that they evolve toward those of ohmic contacts when the island density increases. It is observed that the rectifying behavior also evolves over time as on infinite metal/semiconductor contacts. Using the STM tip, single gold islands can be manipulated on the MoS2 surface so that their electrical behavior can be changed depending on their position with regard to the other islands.  相似文献   

18.
The surface of 1T-TiS2 was examined by scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The STM and AFM images of this compound were interpreted on the basis of the partial electron density ρ(r,EF) and total electron density ρ(r) of a slab which consists of six (001) 1T-TiS2 layers. Electronic structure calculations were performed using the ab-initio Hartree–Fock program crystal. It was found that the bright spots in experimental STM images correspond to sulfur atoms at both positive and negative bias voltages. The AFM image showed a periodicity which can be explained by the atomic corrugation at the surface. Structural defects on the surface were also investigated, and their interpretation constitutes experimental proof that only sulfur atoms were detected by scanning probe microscopies.  相似文献   

19.
We have studied the epitaxial growth and electrical performance of Al-free, GaAs-based, resonant tunnelling diodes (RTDs) including thin barriers of GaInP, GaP, or GaAsxP1−x. n-Type tunnelling diodes have been fabricated and the symmetry in the current–voltage (IV) characteristics, as well as the peak-to-valley ratios, are found to be sensitive probes for the interface quality in the heterostructures. For GaInP RTDs, we show that the introduction of GaP intermediate layers is crucial for the realisation of a useful tunnelling current. RTDs including thin barriers (less than about 10 monolayers (ML)) of GaP are realised, but the strong mismatch between the materials limit the useful thickness. Finally, RTDs with GaAsxP1−x alloys are fabricated showing the best peak-to-valley ratio of the diodes (about 5), as well as a symmetric IV characteristics. The electrical data are further compared to studies by transmission electron microscopy (TEM) in the various material systems.  相似文献   

20.
We have calculated the IV curves, dynamical conductance, and tunneling magnetoresistance (TMR) of 1D magnetic tunneling junction through singleband tight binding model calculations based on the non-equilibrium Green's function approach. The difference in density of state of two ferromagnetic leads and the bias dependence of the propagator cause intrinsic asymmetries in TMR and dynamical conductance at finite bias. Besides, we have displayed that large TMR can be obtained even at high bias for half metallic leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号