首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.  相似文献   

2.
近共振区超短强激光脉冲激发的等离子体尾波场   总被引:1,自引:1,他引:0       下载免费PDF全文
 用一维相对论粒子模拟研究了相对论超短强激光脉冲在等离子体中传播时激发的尾波场,初步获得了近共振区尾波场的峰值幅度随激光脉冲宽度变化的特点,发现在近共振区等离子体波激发出现增强。通过准静态近似下尾波激发的一维非线性方程数值求解,并与粒子模拟结果比较,得到了该非线性方程的适用范围:当激光脉冲宽度小于等离子体波波长的4倍时,该方程所得结果与粒子模拟结果一致;而当激光脉冲宽度大于该数值时,该方程不再适用。  相似文献   

3.
A method to generate ultrahigh intense electromagnetic fields is suggested, based on the laser pulse compression, carrier frequency upshift, and focusing by a counterpropagating breaking plasma wave, relativistic flying parabolic mirror. This method allows us to achieve the quantum electrodynamics critical field (Schwinger limit) with present-day laser systems.  相似文献   

4.
We present the results of 3D PIC and 2D PIC simulations of the ultra short high irradiance laser pulse interaction with targets where the plasma containing multicomponent cluster targets and multicluster cloud is imbedded in an underdense plasma. In both cases the laser radiation expels the electrons from the clusters and ejects them into the wake plasma wave generated by the ultrashort laser pulse in the underdense plasma. This provides a novel mechanism for the electron injection into the wake field for acceleration.  相似文献   

5.
A nonlinear beat-wave regime of plasma wave excitation is considered. Two beat-wave drivers are considered: intensity-modulated laser pulse and density-modulated (microbunched) electron beam. It is shown that a long beat-wave pulse can excite strong plasma waves in its wake even when the beat-wave frequency is detuned from the electron plasma frequency. The wake is caused by the dynamic bistability of the nonlinear plasma wave if the beat-wave amplitude exceeds the analytically calculated threshold. In the context of a microbunched beam driven plasma wakefield accelerator, this excitation regime can be applied to developing a femtosecond electron injector.  相似文献   

6.
It is shown that stochastic heating can play an important role in Laser Wake Field Acceleration. When considering low density plasma interacting with a high intensity wave perturbed by a low intensity counterpropagating wave, stochastic heating can provide electrons with the right momentum for trapping in the wake field. The influence of stochastic acceleration on the trapping of electrons is compared to the one of cold injection by considering several polarizations of the colliding pulses. For some value of the plasma density and pulse duration, a transition from an injection due to stochastic acceleration to a cold injection dominated regime – regarding the trapped charge – has been observed from PIC code simulations. When the plasma density exceeds some value, stochastic heating becomes important and is necessary in some circumstances to get electrons trapped into the wakefield.  相似文献   

7.
The propagation of a short intense laser pulse is studied in a gas taking into account the ionization of gas atoms by the high-frequency electromagnetic field of the pulse. The conditions are found under which the ionization structures produced by the laser pulse cause the pulse focusing accompanied by a substantial increase in its intensity. It is shown that the leading edge of the pulse is subjected to ionization refraction at the ionization front, the temporal profile of the pulse becoming steeper. This results in the efficient generation of a wake wave at the ionization front, which is amplified during the development of self-modulation instability. The amplitude of the wake plasma wave achieves a substantial value already at small paths of the pulse in matter (smaller than the diffraction length of the pulse).  相似文献   

8.
徐涵  常文蔚  银燕  卓红斌  马燕云 《物理学报》2003,52(7):1701-1706
用粒子模拟方法,研究激光脉冲的横向宽度有限时对产生激光尾波场和电子加热的影响. 在 纵向和横向有质动力的作用下,电子密度的空间分布形成“马蹄型”的低密度区,这些低密 度区好像运动的透镜,使长脉冲激光自聚焦,而且随着激光的传播,“马蹄型”的曲率越来 越大,直到产生横向波破. 横向波破一方面使得波破时静电场极值远小于波破极限,另一方 面将更多的电子推入加速相位,静电场“俘获”的电子数目大大增加,但最大电子动能明显 减小. 关键词: 尾波场 有质动力 电子俘获 横向波破  相似文献   

9.
The trapping and acceleration of nonmonoenergetic electron bunches in a wake field wave excited by a laser pulse in a plasma channel is studied. Electrons are injected into the region of the wake wave potential maximum at a velocity lower than the phase velocity of the wave. The paper analyzes the grouping of bunch electrons in the energy space emerging in the course of acceleration under certain conditions of their injection into the wake wave and minimizing the energy spread for such electrons. The factors determining the minimal energy spread between bunch electrons are analyzed. The possibility of monoenergetic acceleration of electron bunches generated by modern injectors in a wake wave is analyzed.  相似文献   

10.
The efficient generation of intense X-rays and γ-radiation is studied. The scheme is based on the relativistic mirror concept, i.e., a flying thin plasma slab interacts with a counterpropagating laser pulse, reflecting part of it in the form of an intense ultra-short electromagnetic pulse having an up-shifted frequency. In the proposed scheme a series of relativistic mirrors is generated in the interaction of the intense laser with a thin foil target as the pulse tears off and accelerates thin electron layers. A counterpropagating pulse is reflected by these flying layers in the form of an ensemble of ultra-short pulses resulting in a significant energy gain of the reflected radiation due to the momentum transfer from flying layers.  相似文献   

11.
The interaction of atoms with ultrafast, counterpropagating optical fields is considered. The magnetic degeneracy and hyperfine splitting of the atomic levels are included in the calculations, which are carried out for arbitrary polarizations of the incident fields. The counterpropagating fields produce spatial harmonics in the ground state density matrix (gratings) which can be monitored by backscattering of a traveling wave probe pulse. Two types of excitation schemes are analyzed. The Magnetic-Grating Free-Induction Decay (MGFID) consists of excitation with a single counterpropagating wave field, while the Magnetic-Grating Echo (MGE) involves excitation by two counterpropagating wave fields, separated in time by T. The atomic response to the probe pulse is calculated in lowest-order perturbation theory for atoms cooled below the Doppler limit of laser cooling. Both the MGFID and MGE signals consist of pulses having a duration of order of the excited state lifetime, modulated at frequencies corresponding to the various hyperfine transitions. As a function of the delay between pulses, the signals oscillate at frequencies determined by the ground state hyperfine splittings. General expressions for the MGFID and MGE signals are derived and specific results are presented for the D2 line in Na.  相似文献   

12.
Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are "shut down" with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.  相似文献   

13.
The formation and acceleration of electron bunches resulting from the self-injection of electrons into the wake wave from the laser pulse moving through a sharp plasma boundary are investigated in one-dimensional geometry. It is shown that electron trapping in the accelerating wakefield is governed by the electron energy and has a threshold character. The acceleration of the trapped bunch is numerically simulated.  相似文献   

14.
A detailed theoretical analysis is carried out of the hose instability of relativistically strong laser pulses propagating in a plasma, whose duration is less than the period of a plasma wake wave. An analytic expression is obtained for the displacement of the mass center of a wave pulse, and the effect of this instability on the modification of the spectrum of laser radiation is analyzed for a wide range of initial parameters. It is shown that the development of instability is characterized by a power-law (rather than exponential) time dependence along the propagation path and does not deteriorate the self-compression of laser pulses.  相似文献   

15.
稀薄等离子体中激发尾波场的共振条件   总被引:1,自引:0,他引:1  
研究了在稀薄等离子体中强激光激发尾波场的情况 ,发现尾波场的激发与入射激光的脉冲宽度有共振现象。在光强很小情况下 ,共振所需要的入射激光脉冲宽度为λp 2 ,随着光强的增大共振激光脉冲宽度减小。同时发现在稀薄等离子体中激发的尾波势场与等离子体的密度几乎无关 ,而激发的尾波场最大电场强度与等离子体的密度有关。  相似文献   

16.
The nonlinear interaction between counterpropagating laser beams in a plasma results in the generation of large (enhanced) plasma wakes. The two beams need to be slightly detuned in frequency, and one of them has to be ultrashort (shorter than a plasma period). Thus produced wakes have a phase velocity close to the speed of light and can be used for acceleration and compression of charged bunches, The physical mechanism responsible for the enhanced wake generation is qualitatively described and compared with the conventional laser wakefield mechanism. We also demonstrate that depending on the sign of the frequency difference between the lasers, the enhanced wake can be used as a “snow-plow” to accelerate and compress either positively or negatively charged bunches. This ability can be used in an electron-positron injector  相似文献   

17.
Experimental investigations of the late-time ion structures formed in the wake of an ultrashort, intense laser pulse propagating in a tenuous plasma have been performed using the proton imaging technique. The pattern found in the wake of the laser pulse shows unexpectedly regular modulations inside a long, finite width channel. On the basis of extensive particle in cell simulations of the plasma evolution in the wake of the pulse, we interpret this pattern as due to ion modulations developed during a two-stream instability excited by the return electric current generated by the wakefield.  相似文献   

18.
We formulate a theory of quasi-phase matching of high harmonic generation using weak counterpropagating pulse trains. We predict the optimal laser intensities and pulse shapes for the counterpropagating field and find that the conversion efficiency is better than the efficiency obtained by simply suppressing harmonic emission from out-of-phase regions.  相似文献   

19.
We study the electromagnetic radiation at twice the plasma frequency, which emerges because of the interaction of two identical counterpropagating short laser pulses in a rarefied plasma and caused by excitation of small-scale standing plasma waves in the pulse overlap region. The energy, spectral, and angular characteristics of radiation are investigated, and the dependence of these characteristics on the parameters of the laser pulses is analyzed. The possibility of applying this effect for diagnostics of localized plasma oscillations is discussed.  相似文献   

20.
The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号