首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以BiNO3·5H2O和NH4VO3为原料,柠檬酸为络合剂,成功合成了BiVO4空心纳米球.采用TEM、XRD、UV-Vis等测试技术对样品的形貌、相结构以及光吸收性能等进行了表征.结果表明,所制备的BiVO4空心微球在紫外区和可见区均有较强的光吸收,空心球平均粒径为160 nm,空腔直径为10~80 nm.以亚甲基蓝染料溶液的脱色降解实验为模型反应研究了样品的光催化性能.光催化实验结果表明,在可见光照射下,反应150 min后,样品对亚甲基蓝溶液的脱色率可达到95%以上.此外,考察了柠檬酸添加量对空心球形貌的影响,并提出了BiVO4空心纳米球的可能形成机理.  相似文献   

2.
The subsolidus phase relations of a ZnO-V 2 O 5-K 2 O system are investigated by X-ray powder diffraction.There is 1 ternary compound,11 binary compounds and 14 three-phase regions in this system.The phase diagrams of V 2 O 5 K 2 O with the K 2 O content ranging from 0 to 71 mol% and pseudo-binary system of ZnO-K 2 ZnV 2 O 7 are also studied by X-ray powder diffraction and differential thermal analysis methods.  相似文献   

3.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

4.
A simple sonochemical method was developed to synthesis uniform sphere-like Co3O4 and Mn3O4 nanocrystals. Epoxidation of styrene and cyclooctene by anhydrous tert-butyl hydroperoxide over the prepared Co3O4 and Mn3O4 nanocatalysts was investigated. The results of conversion activity were compared with bulk Co3O4 and Mn3O4. Under optimized reaction conditions, the nanocatalysts showed a superior catalytic performance as compared to the bulk catalysts. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area, were used to characterize and investigate the nanocatalysts.  相似文献   

5.
Zn2SnO4:Eu3+ nanocrystals were one-step synthesized by hydrothermal method for the first time. All the products were systematically characterized by powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron probe X-ray microanalyzer (EPMA), photoluminescence (PL) and photoluminescent excitation (PLE). The characteristic peak of Eu3+-doped in Zn2SnO4 nanocrystals was also detected. The luminescent properties of blank and Eu3+-doped Zn2SnO4 nanocrystals were reported.  相似文献   

6.
Combining two methods, coating and doping, to modify spinel LiMn2O4, is a novel approach we used to synthesize active material. First we coated the LiMn2O4 particles with the nickel oxide particles by means of homogenous precipitation, and then the nickel oxide-coated LiMn2O4 was calcined at 750 °C to form a LiNixMn2−xO4 shell on the surface of spinel LiMn2O4 particles. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and charge-discharge test were performed to characterize the spinel LiMn2O4 before and after modification. The experimental results indicated that a spinel LiMn2O4 core is surrounded by a LiNixMn2−xO4 shell. The resulting composite showed excellent electrochemical cycling performance with an average fading rate of 0.014% per cycle. This improved cycle stability is greatly attributed to the suppression of Jahn-Teller distortion on the surface of spinel LiMn2O4 particles during cycling.  相似文献   

7.
A novel flower-shaped Bi2O3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi2O3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi2O3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.  相似文献   

8.
Nanocrystalline Zn0.5Mn0.5Fe2O4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15–25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism.  相似文献   

9.
不使用任何模板一步制得空心Fe3O4纳米颗粒,然后将海藻酸钠嫁接在氨基化的空心Fe3O4表面,再利用海藻酸盐与钙离子的作用,在空心Fe3O4表面形成一个凝胶化层,制得海藻酸盐凝胶化的空心Fe3O4纳米颗粒,粒径约为400~500 nm.采用TEM、XRD、XPS、VSM等手段对纳米微球进行表征.VSM表征结果表明在室温下样品磁性材料为超顺磁性.改性Fe3O4纳米颗粒成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为28.4%和14.2%.缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢地释放.  相似文献   

10.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

11.
In this study, we report the novel β-Ga2O3 nanostructures synthesized by the thermal evaporation of Ga droplet in the presence of Au catalysts at 900 °C. The morphology and structure of the products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The single-crystalline β-Ga2O3 nanosheets have lateral dimensions up to several tens of microns. Large arrays of column-like layered crystal β-Ga2O3 structures that consisted of many nanosheets were formed on the Au-coated silicon substrate under the suitable vapor concentration. These novel β-Ga2O3 nanostructures are expected to have potential application in functional nanodevices.  相似文献   

12.
Three-dimensional (3D) architecture of TiO2 hollow sphere has many excellent and interesting performances that attract significant attention nowadays. In this paper, a simple surface erosion approach to the fabrication of TiO2 hollow spheres via the hydrothermal process has been developed. The morphologies and the phase were characterized by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The results indicate that the anatase-type TiO2 hollow spheres with a diameter of ∼1 μm are successfully synthesized. The shell thickness of TiO2 hollow spheres is ∼150 nm and the size of hollow cavity is ∼600 nm. By the control experiments, the influence of ammonium fluoride and hydrogen peroxide on the hollow spherical structures was studied. Hydrogen peroxide acts as both the oxidant and the bubble generator, ammonium fluoride is crucial for the erosion and dissolution of titanium, the detailed dissolution-crystallization mechanism for the formation of TiO2 hollow spheres was also proposed.  相似文献   

13.
The microstructure of a laser treated Al18B4O33w/2024Al composite has been investigated using transmission electron microscope (TEM), low-angle (glancing angle) X-ray diffraction (XRD) techniques. Various surface microstructures were observed in the laser treated composite. The Al18B4O33 whisker on the surface of the composite was decomposed during laser surface melting, various decomposition products were studied in the laser treated composite. Eutectic phases and the precipitation in the matrix of the composite with laser-treated were observed. The main phases detected in the molten zone were aluminum and decomposition products Al2O3. The effect of laser treatment on the hardness of the composite was also examined. A surface hardness of 400 Hv was noted.  相似文献   

14.
This paper reports that Cr2O3 hollow nanospheres(HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy,x-ray powder diffraction,transmission electron microscopy(TEM),selective area electron diffraction and high resolution TEM,respectively.In addition,the room-temperature(RT) gas sensing properties of Cr2O3 HNs and conventional powders(CPs) were investigated by means of the surface photovoltage technique.The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm,which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT.The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.  相似文献   

15.
Two types of γ-Fe2O3 nanoparticles, pure γ-Fe2O3 and γ-Fe2O3 dispersed on sol–gel silica spheres (γ-Fe2O3/SiO2) in thin film form were prepared by the sol–gel technique. Transmission electron microscopy, X-ray diffraction, optical transmittance and FTIR studies along with photoluminescence measurements were carried out for characterizing the samples. The X-ray diffraction patterns of both γ-Fe2O3 nanoparticles and γ-Fe2O3/SiO2 indicated their phase-pure forms which were supported by the FTIR spectra. The average sizes of the nanoparticles obtained from transmission electron microscopy studies were 4 nm for both types of samples. Optical transmittance studies indicated direct allowed transitions with two band gaps at 2.43 and 3.07 eV. Although both types of samples showed excitonic luminescence at 2.38 eV (at room temperature), the luminescence intensity of the γ-Fe2O3/SiO2 was higher than that of pure γ-Fe2O3.  相似文献   

16.
Nanocrystalline Ni0.5Cu0.5Fe2O4 was synthesized by sol-gel method with varying calcination temperature over the range of 500-1000. The powders obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, thermal analysis (TG-DTG-DTA) of the precursor was carried out. The study reveals the simultaneous decomposition and ferritization process at rather low temperature (280-350). For the crystalline structure investigated, single cubic spinel is gained when the precursor was decomposed at 800-1000, whereas separated crystal CuO formed when calcination temperature is below 800. The increase of calcination temperature favors the appearance of FeB3+, CuA2+ and O on the spinel surface. The hydroxylation activity is relative to the amount of CuB2+ species on the spinel surface. The lattice oxygen species on the spinel surface are favorable for the deep oxidation of phenol.  相似文献   

17.
A novel manganese coordination polymer [Mn(Pht)(H2O)]n as a precursor was obtained by chemical precipitation involving an aqueous solution of anhydrous manganese acetate and phthalate anion as a potential O-banded ligand. Fourier transform infrared (FT-IR) results proved that phthalate anions coordinate to metal cations as a chelating bidentate ligand, making polymeric structure. The Mn2O3 nanostructures have been prepared via thermal decomposition of as-prepared manganese phthalate polymers as precursor in the presence of oleic acid (OA) and triphenylphosphine (TPP) as a stabilizer and capping. Different approaches such as FT-IR, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to characterize the products. TEM images and XRD analysis indicated that the as-synthesized chain-like Mn2O3 has a crystal phase of cubic syngony with a mean size of ∼40 nm.  相似文献   

18.
在温和的条件下,通过H2O2水热处理预合成的MCM-48,得到了有序的双峰介孔硅MCM-48球. 结果表明H2O2对于同时去除有机模板剂及形成双峰介孔硅MCM-48球具有重要的作用.采用XRD、TEM、FT-IR和N2吸附-解吸等方法对双峰介孔MCM-48材料进行了表征,对双峰介孔MCM-48的形成机理也进行了探讨.  相似文献   

19.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

20.
In this paper, a novel approach was successfully developed for advanced catalyst Ag-deposited silica-coated Fe3O4 magnetic nanoparticles, which possess a silica coated magnetic core and growth active silver nanoparticles on the outer shell using n-butylamine as the reductant of AgNO3 in ethanol. The as-synthesized nanoparticles have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), and have been exploited as a solid phase catalyst for the reduction of p-nitrophenol in the presence of NaBH4 by UV-vis spectrophotometry. The obtained products exhibited monodisperse and bifunctional with high magnetization and excellent catalytic activity towards p-nitrophenol reduction. As a result, the as-obtained nanoparticles showed high performance in catalytic reduction of p-nitrophenol to p-aminophenol with conversion of 95% within 14 min in the presence of an excess amount of NaBH4, convenient magnetic separability, as well as remained activity after recycled more than 6 times. The Fe3O4@SiO2-Ag functional nanostructure could hold great promise for various catalytic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号