首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Consider the 1/2-Ising model inZ 2. Let σ j be the spin at the site (j, 0)∈Z 2 (j=0, ±1, ±2, ...). Let \(\{ X_n \} _{n = 0}^{ + \infty } \) be a random walk with the random transition probabilities such that $$P(X_{n + 1} = j \pm 1|X_n = j) = p_j^ \pm \equiv 1/2 \pm v(\sigma _j - \mu )/2$$ We show a case whereE[p j + E[p j ? ], but \(\mathop {\lim }\limits_{n \to \infty } X_n = - \infty \) is recurrent a.s.  相似文献   

2.
If for a relativistic field theory the expectation values of the commutator (Ω|[A (x),A(y)]|Ω) vanish in space-like direction like exp {? const|(x-y 2|α/2#x007D; with α>1 for sufficiently many vectors Ω, it follows thatA(x) is a local field. Or more precisely: For a hermitean, scalar, tempered fieldA(x) the locality axiom can be replaced by the following conditions 1. For any natural numbern there exist a) a configurationX(n): $$X_1 ,...,X_{n - 1} X_1^i = \cdot \cdot \cdot = X_{n - 1}^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^1 - X_{i + 1}^1 )} \right]^2 + \left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^2 - X_{i + 1}^2 )} \right]^2 > 0\) for all λ i ≧0i=1,...,n?2, \(\sum\limits_{i = 1}^{n - 2} {\lambda _i > 0} \) , b) neighbourhoods of theX i 's:U i (X i )?R 4 i=1,...,n?1 (in the euclidean topology ofR 4) and c) a real number α>1 such that for all points (x):x 1, ...,x n?1:x i U i (X r ) there are positive constantsC (n){(x)},h (n){(x)} with: $$\left| {\left\langle {\left[ {A(x_1 )...A(x_{n - 1} ),A(x_n )} \right]} \right\rangle } \right|< C^{(n)} \left\{ {(x)} \right\}\exp \left\{ { - h^{(n)} \left\{ {(x)} \right\}r^\alpha } \right\}forx_n = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ r \\ \end{array} } \right),r > 1.$$ 2. For any natural numbern there exist a) a configurationY(n): $$Y_2 ,Y_3 ,...,Y_n Y_3^i = \cdot \cdot \cdot = Y_n^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^1 - Y_{i{\text{ + 1}}}^{\text{1}} } )} \right]^2 + \left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^2 - Y_{i{\text{ + 1}}}^{\text{2}} } )} \right]^2 > 0\) for all μ i ≧0,i=3, ...,n?1, \(\sum\limits_{i = 3}^{n - 1} {\mu _i > 0} \) , b) neighbourhoods of theY i 's:V i(Y i )?R 4 i=2, ...,n (in the euclidean topology ofR 4) and c) a real number β>1 such that for all points (y):y 2, ...,y n y i V i (Y i there are positive constantsC (n){(y)},h (n){(y)} and a real number γ(n){(y)∈a closed subset ofR?{0}?{1} with: γ(n){(y)}\y 2,y 3, ...,y n totally space-like in the order 2, 3, ...,n and $$\left| {\left\langle {\left[ {A(x_1 ),A(x_2 )} \right]A(y_3 )...A(y_n )} \right\rangle } \right|< C_{(n)} \left\{ {(y)} \right\}\exp \left\{ { - h_{(n)} \left\{ {(y)} \right\}r^\beta } \right\}$$ for \(x_1 = \gamma _{(n)} \left\{ {(y)} \right\}r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right),x_2 = y_2 - [1 - \gamma _{(n)} \{ (y)\} ]r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right)\) and for sufficiently large values ofr.  相似文献   

3.
We study subadditive functions of the random parking model previously analyzed by the second author. In particular, we consider local functions S of subsets of ${\mathbb{R}^d}$ and of point sets that are (almost) subadditive in their first variable. Denoting by ξ the random parking measure in ${\mathbb{R}^d}$ , and by ξ R the random parking measure in the cube Q R =  (?R, R) d , we show, under some natural assumptions on S, that there exists a constant ${\overline{S} \in \mathbb{R}}$ such that $$\lim_{R \to +\infty} \frac{S(Q_R, \xi)}{|Q_R|} \, = \, \lim_{R \to +\infty} \frac{S(Q_R, \xi^{R})}{|Q_R|} \, = \, \overline{S}$$ almost surely. If ${\zeta \mapsto S(Q_R, \zeta)}$ is the counting measure of ${\zeta}$ in Q R , then we retrieve the result by the second author on the existence of the jamming limit. The present work generalizes this result to a wide class of (almost) subadditive functions. In particular, classical Euclidean optimization problems as well as the discrete model for rubber previously studied by Alicandro, Cicalese, and the first author enter this class of functions. In the case of rubber elasticity, this yields an approximation result for the continuous energy density associated with the discrete model at the thermodynamic limit, as well as a generalization to stochastic networks generated on bounded sets.  相似文献   

4.
5.
The identity $$\sum\limits_{v = 0} {\left( {\begin{array}{*{20}c} {n + 1} \\ v \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} {n - v} \\ v \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {n - v} \\ {v - 1} \\ \end{array} } \right)} \right] = ( - 1)^n } $$ is proved and, by means of it, the coefficients of the decomposition ofD 1 n into irreducible representations are found. It holds: ifD 1 n \(\mathop {\sum ^n }\limits_{m = 0} A_{nm} D_m \) , then $$A_{nm} = \mathop \sum \limits_{\lambda = 0} \left( {\begin{array}{*{20}c} n \\ \lambda \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda - 1} \\ \end{array} } \right)} \right].$$   相似文献   

6.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

7.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

8.
LetS ?=??Δ+V, withV smooth. If 0<E 2V(x), the spectrum ofS ? nearE 2 consists (for ? small) of finitely-many eigenvalues,λ j (?). We study the asymptotic distribution of these eigenvalues aboutE 2 as ?→0; we obtain semi-classical asymptotics for $$\sum\limits_j {f\left( {\frac{{\sqrt {\lambda _j (\hbar )} - E}}{\hbar }} \right)} $$ with \(\hat f \in C_0^\infty \) , in terms of the periodic classical trajectories on the energy surface \(B_E = \left\{ {\left| \xi \right|^2 + V(x) = E^2 } \right\}\) . This in turn gives Weyl-type estimates for the counting function \(\# \left\{ {j;\left| {\sqrt {\lambda _j (\hbar )} - E} \right| \leqq c\hbar } \right\}\) . We make a detailed analysis of the case when the flow onB E is periodic.  相似文献   

9.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

10.
This paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform $$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$ Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail $$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$ In the regime of smallα, ifα¦logz¦?1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQ α (z) for variousα in the range 0<α<1. The functionQ α (z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as $$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$ with $$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$ It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε n (ω) is shown to be directly related toQ α (z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions $$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$ the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).  相似文献   

11.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

12.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

13.
LetQ n β be the law of then-step random walk on ?d obtained by weighting simple random walk with a factore for every self-intersection (Domb-Joyce model of “soft polymers”). It was proved by Greven and den Hollander (1993) that ind=1 and for every β∈(0, ∞) there exist θ*(β)∈(0,1) and such that under the lawQ n β asn→∞: $$\begin{array}{l} (i) \theta ^* (\beta ) is the \lim it empirical speed of the random walk; \\ (ii) \mu _\beta ^* is the limit empirical distribution of the local times. \\ \end{array}$$ A representation was given forθ *(β) andµ β β in terms of a largest eigenvalue problem for a certain family of ? x ? matrices. In the present paper we use this representation to prove the following scaling result as β?0: $$\begin{array}{l} (i) \beta ^{ - {\textstyle{1 \over 3}}} \theta ^* (\beta ) \to b^* ; \\ (ii) \beta ^{ - {\textstyle{1 \over 3}}} \mu _\beta ^* \left( {\left\lceil { \cdot \beta ^{ - {\textstyle{1 \over 3}}} } \right\rceil } \right) \to ^{L^1 } \eta ^* ( \cdot ) . \\ \end{array}$$ The limitsb *∈(0, ∞) and are identified in terms of a Sturm-Liouville problem, which turns out to have several interesting properties. The techniques that are used in the proof are functional analytic and revolve around the notion of epi-convergence of functionals onL 2(?+). Our scaling result shows that the speed of soft polymers ind=1 is not right-differentiable at β=0, which precludes expansion techniques that have been used successfully ind≧5 (Hara and Slade (1992a, b)). In simulations the scaling limit is seen for β≦10?2.  相似文献   

14.
I. I. Guseinov 《Few-Body Systems》2013,54(11):1773-1780
By the use of complete orthonormal sets of ${\psi ^{(\alpha^{\ast})}}$ -exponential type orbitals ( ${\psi ^{(\alpha^{\ast})}}$ -ETOs) with integer (for α * = α) and noninteger self-frictional quantum number α *(for α * ≠ α) in standard convention introduced by the author, the one-range addition theorems for ${\chi }$ -noninteger n Slater type orbitals ${(\chi}$ -NISTOs) are established. These orbitals are defined as follows $$\begin{array}{ll}\psi _{nlm}^{(\alpha^*)} (\zeta ,\vec {r}) = \frac{(2\zeta )^{3/2}}{\Gamma (p_l ^* + 1)} \left[{\frac{\Gamma (q_l ^* + )}{(2n)^{\alpha ^*}(n - l - 1)!}} \right]^{1/2}e^{-\frac{x}{2}}x^{l}_1 F_1 ({-[ {n - l - 1}]; p_l ^* + 1; x})S_{lm} (\theta ,\varphi )\\ \chi _{n^*lm} (\zeta ,\vec {r}) = (2\zeta )^{3/2}\left[ {\Gamma(2n^* + 1)}\right]^{{-1}/2}x^{n^*-1}e^{-\frac{x}{2}}S_{lm}(\theta ,\varphi ),\end{array}$$ where ${x=2\zeta r, 0<\zeta <\infty , p_l ^{\ast}=2l+2-\alpha ^{\ast}, q_l ^{\ast}=n+l+1-\alpha ^{\ast}, -\infty <\alpha ^{\ast} <3 , -\infty <\alpha \leq 2,_1 F_1 }$ is the confluent hypergeometric function and ${S_{lm} (\theta ,\varphi )}$ are the complex or real spherical harmonics. The origin of the ${\psi ^{(\alpha ^{\ast})} }$ -ETOs, therefore, of the one-range addition theorems obtained in this work for ${\chi}$ -NISTOs is the self-frictional potential of the field produced by the particle itself. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids when Hartree–Fock–Roothan approximation is employed.  相似文献   

15.
The cross section of the quasi-elastic reactions \(\bar v_\mu p \to \mu ^ + \Lambda (\Sigma ^0 )\) in the energy range 5–100 GeV is determined from Fermilab 15′ bubble chamber antineutrino data. TheQ 2 analysis of quasi-elastic Λ events yieldsM A=1.0±0.3 GeV/c2 for the axial mass value. With zero µΛ K 0 events observed, the 90% confidence level upper limit \(\sigma (\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 )< 2.0 \cdot 10^{ - 40} cm^2 \) is obtained. At the same time, we found that the cross section of reaction \(\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 + m\pi ^0 \) is equal to \(\left( {3.9\begin{array}{*{20}c} { + 1.6} \\ { - 1.3} \\ \end{array} } \right) \cdot 10^{ - 40} cm^2 \) .  相似文献   

16.
We prove that for a bounded domainD ?R n withC 2 boundary and \(q \in K_n^{loc} (n \geqq 3) if E^x \exp \int\limits_0^{\tau _D } {q(x_t )dt} \mathop \ddag \limits_--- \infty \) inD, then $$\mathop {\sup }\limits_{\mathop {x \in D}\limits_{z \in \partial D} } E_z^x \exp \int\limits_0^{\tau _D } {q(x_t )dt}< + \infty $$ ({x t : Brownian motion}) The important corollary of this result is that if the Schrödinger equation Δ/2u+qu=0 has a strictly positive solution onD, then for anyD 0 ? ?D, there exists a constantC=C(n,q,D,D 0) such that for anyf εL 1(?D, σ), (σ: area measure on ?D) we have $$\mathop {\sup |}\limits_{x \in D_0 } u_f (x)| \mathop< \limits_ = C\int\limits_{\partial D} {|f(y)|\sigma (dy)} $$ whereu f is the solution of the Schrödinger equation corresponding to the boundary valuef. To prove the main result we set up the following estimate inequalities on the Poisson kernelK(x,z) corresponding to the Laplace operator: $$C_1 \frac{{d(x,\partial D)}}{{|x - z|^n }}\mathop< \limits_ = K(x,z)\mathop< \limits_ = C_2 \frac{{d(x,\partial D)}}{{|x - z|^n }},x \in D,z \in \partial D$$ whereC 1 andC 2 are constants depending onn andD.  相似文献   

17.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

18.
We estimate $BR(K \to \pi \nu \bar \nu )$ in the context of the Standard Model by fitting for λ tV tdV ts * of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |? K|, the CP-violating parameter describing K mixing, and a ψ,K , the CP-violating asymmetry in B d 0 J/ψK 0 decays, and obtain the values $\left. {BR(K \to \pi \nu \bar \nu )} \right|_{SM} = (7.07 \pm 1.03) \times 10^{ - 11} $ and $\left. {BR(K_L^0 \to \pi ^0 \nu \bar \nu )} \right|_{SM} = (2.60 \pm 0.52) \times 10^{ - 11} $ . Our estimate is independent of the CKM matrix element V cb and of the ratio of B-mixing frequencies ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ . We also use the constraint estimation of λ t with additional data from $\Delta m_{B_d } $ and |V ub|. This combined analysis slightly increases the precision of the rate estimation of $K^ + \to \pi ^ + \nu \bar \nu $ and $K_L^0 \to \pi ^0 \nu \bar \nu $ (by ?10 and ?20%, respectively). The measured value of $BR(K^ + \to \pi ^ + \nu \bar \nu )$ can be compared both to this estimate and to predictions made from ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ .  相似文献   

19.
We obtain computable upper bounds for any given Mayer graph withn root-points (orn-graph). These are products of integrals of the type \(\left( {\int {\left| {f_L } \right|^{z_{iL} y_i^{ - 1} } dx} } \right)^{yi} \) , where thez iL andy i are nonnegative real numbers whose sum overi is equal to 1. As a particular case, we obtain the canonical bounds (see their definition in Section 2.2): $$\left| {\int {\prod\limits_L {f_L \left( {x_i ,x_j } \right)dx_{n + 1} \cdot \cdot \cdot dx_{n + k} } } } \right| \leqslant \prod\limits_L {\left( {\int {\left| {f_L } \right|^{\alpha _L } dx} } \right)^{\alpha _L^{ - 1} } } $$ where theα L 's satisfy the conditionα L ≥1 for anyL, and ∑ L α L ?1 =k (k is the number of variables that are integrated over). These bounds are finite for alln-graphs of neutral systems. We obtain also finite bounds for all irreduciblen-graphs of polar systems, and for certainn-graphs occurring in the theory of ionized systems. Finally, we give a sufficient condition for an arbitraryn-graph to be finite.  相似文献   

20.
For a large class of generalizedN-body-Schrödinger operators,H, we show that ifE<Σ=infσess(H) and ψ is an eigenfunction ofH with eigenvalueE, then $$\begin{array}{*{20}c} {\lim } \\ {R \to \infty } \\ \end{array} R^{ - 1} \ln \left( {\int\limits_{S^{n - 1} } {|\psi (R\omega )|} ^2 d\omega } \right)^{1/2} = - \alpha _0 ,$$ with α 0 2 +E a threshold. Similar results are given forE≧Σ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号