首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The machining response of amorphous and crystalline Ni78B14Si8 was investigated when structuring substrates using focused-ion-beam (FIB) milling. In particular, the sputtering yield as a function of the scan speed, and the effects of ion fluence and scan speed on the milled depth were studied. The ion fluence dependent evolution of the cross-sectional profiles of trenches was examined by atomic force microscopy (AFM). When milling amorphous Ni78B14Si8, it was found that the sputtering yield first decreased with increasing the beam scan speed, then kept constant within the scan speed range, up to 710 nm/s, investigated in this work; it was also found that the milled depth was almost proportional to the ion beam fluence. The patterning of polycrystalline Ni78B14Si8 resulted in anisotropic milling-rates due to the varying orientation of the grains in the material. The analysis of the profile evolution in both materials indicated that the surface finish of trenches was scan speed, ion beam fluence and scan strategy dependent. The study demonstrated that direct patterning by FIB could be used for producing masters in amorphous Ni-based alloys for injection moulding and hot embossing.  相似文献   

2.
To study the ion sputtering rates of W-, Ti- and Cr-carbides, trilayer structures comprising C-graphite (59 nm)/WC (50 nm)/W (38 nm), C-graphite (56 nm)/TiC (40 nm)/Ti (34 nm) and C-graphite (46 nm)/C3C2 (60 nm)/Cr (69 nm) with a tolerance ±2% were sputter deposited onto smooth silicon substrates. Their precise structural and compositional characterization by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) revealed that the WC and Cr3C2 layers were amorphous, while the TiC layer had a polycrystalline structure. The ion sputtering rates of all three carbides, amorphous carbon and polycrystalline Cr, Ti and W layers were determined by means of Auger electron spectroscopy depth profiling as a function of the angle of incidence of two symmetrically inclined 1 keV Ar+ ion beams in the range between 22° and 82°. The sputtering rates were calculated from the known thicknesses of the layers and the sputtering times necessary to remove the individual layers. It was found that the sputtering rates of carbides, C-graphite and metals were strongly angle dependent. For the carbides in the range between 36° and 62° the highest ion sputtering rate was found for Cr3C2 and the lowest for TiC, while the values of the sputtering rates for WC were intermediate. The normalized sputtering yields calculated from the experimentally obtained data for all three carbides followed the trend of theoretical results obtained by calculation of the transport of ions in solids by the SRIM code. The sputtering yields are also presented in terms of atoms/ion. Our experimental data for two ion incidence angles of 22° and 49° and reported values of other authors for C-graphite and metals are mainly inside the estimated error of about ±20%. The influence of the ion-induced surface topography on the measured sputtering yields was estimated from the atomic force microscope (AFM) measurements at the intermediate points of the corresponding layers on the crater walls formed during depth profiling.  相似文献   

3.
4.
Investigations of the general characteristics and distinctive features of sputtering of A 3 B 5 materials (GaP, GaAs, GaSb, InP and InSb) under bombardment with N 2 + ions have been carried out. From the experimental data, dependences of the sputtering yield of these materials on the incidence angle and ion energy have been obtained and the surface relief patterns produced by target etching have been studied. It has been shown that the dependence on energy of the sputtering yield for GaP, GaAs, and InP can be adequately described by the Haffa-Switkovski formula for binary materials and Yudin’s approximation for elemental targets. Sputtering of GaSb and InSb proceeds in the surface layer recrystallization mode, and the sputtering yield agrees with calculations based on Onderlinden’s model. From a comparison of the experimental and calculated dependences, the surface bonding energies have been determined.  相似文献   

5.
Two different organic materials, Irganox1010 and Irganox3114, were vacuum deposited as alternating layers. The layers of Irganox3114 were thin (∼2.5 nm) in comparison to the Irganox1010 (∼55 or ∼90 nm); we call these ‘organic delta layers’. Both materials are shown to have identical sputtering yields and the alternating layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling of organic materials. The sputtering yield for C60 ions is shown to diminish with ion dose. Comparison with atomic force microscopy data from films of pure Irganox1010, demonstrates that the depth resolution is limited by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Organic delta layers are shown to be valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.  相似文献   

6.
In the paper, TRIM and TRIDYN simulation codes were used to simulate the sputtering processes of boron nitride (BN) films during bombardment of ions. The TRIM and TRIDYN codes are applicable to the simulation of sputtering processes of different target materials with amorphous and polycrystalline structure. The results of the simulations are compared with experimental data. The sputtering experiments of polycrystalline hexagonal BN (h-BN) and cubic BN (c-BN) films were performed in a Commonwealth Scientific Corporation (CSC) 38-cm ion beam source device. The comparison of calculated and experimental results indicated that a) the experimental sputtering yields of h-BN and c-BN films bombarded with Ar+ ions versus the angle of incidence are in reasonable agreement with the calculated results; b) the sputtering yields of h-BN and c-BN bombarded with Ar+ are nearly of the same values versus the angle of incidence-preferential sputtering of h-BN was not found; c) the calculated sputtering. Yields of BN as a function of Ar+ ion energy are very sensitive to values of the surface binding energy (SEE); and d) surface binding energy between 2 and 3 eV for BN appears to be reasonable for the simulation of sputtering process of h-BN and c-BN films  相似文献   

7.
We have investigated thin sputtered films of the highT c material YBa2Cu3O7 by means of Raman spectroscopy at different stages of the preparation process. We find that the films are amorphous after sputtering. The Raman spectra indicate that random polycrystalline layers, as well as crystalline layers with preferred orientation, are obtained by an additional thermal treatment.  相似文献   

8.
Afonin  N. N.  Logacheva  V. A. 《Technical Physics》2018,63(4):605-611

Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co–TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal–oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923–1073 K.

  相似文献   

9.
Calculation of the total dielectronic recombination (DR) rates was done in the frame of a statistical model of atoms. The model is based on the idea of collective excitations of atomic electrons with the local plasma frequency, which depends on atomic electrons density distribution. The electron density is described in a frame of the Thomas‐Fermi model of atoms. Simple scaling laws for temperature Te and nuclear charge Z dependences follow from the statistical model of DR. Results of the statistical model were compared with other numerical data following detailed level‐by‐level computations for different multielectron ions. The specific attention is paid to Ni‐like ion sequences of different chemical elements in order to check the Z ‐dependence of DR rates. A comparison with numerical data of Flexible Atomic Code (FAC) is presented for tungsten ions. The reasonable correspondence between the statistical model and the detailed numerical data is demonstrated. The application of the statistical model provides very simple and fast calculations of the DR rates useful in modern plasma modelling. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The sputtering of fullerene C60 films under bombardment with Ar+ ions was studied. In thin films, blistering effects related to diffusion of the implanted argon ions along the layer and substrate interface have been found to occur. A threshold behavior was observed for sputtering at ion energies around 0.2 keV, which is much higher than in graphites. It has been shown that dependence of the work function on ion energy can be described in the framework of Zigmund-Falcone’s approximation, which takes into account anisotropic effects in cascade collisions, and with Yudin’s approximation for the sputtering of elemental materials. The obtained surface binding energy for fullerenes is U s?6.7 eV, which is less than the value for graphites, U s graph=7.7 eV.  相似文献   

11.
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH4+Ar+H2 gas mixture at a low substrate temperature of 300 °C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si–Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/ and a hole concentration of 6.3×1018 cm−3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300 °C is proposed.  相似文献   

12.
The computer simulation program MARLOWE which follows the trajectories of energetic ions and recoiling target atoms in solids has been used to calculate sputtering yields for low energy (0.1–10keV) light ions (H, D, T,4He). Recoil energy densities were calculated for comparison with analytical theories. The sputtering yields obtained for amorphous Fe agree within a factor of two with experimentally measured values for polycrystalline stainless steel, while the calculated yields for protons on amorphous molybdenum are more than twice the experimental values on polycrystalline material. The calculations show that in the parameter range investigated, ions backscattered in the solid contribute a major part to sputtering. This result confirms earlier calculations of the threshold energy for sputtering which are in agreement with recent measurements. Operated for the United States Department of Energy by the Union Carbide Corporation.  相似文献   

13.
Abstract

Present work deals with atomic and electronic alterations of the quartz structure by high energy ion irradiation. The atomic structure of irradiated quartz is probed by means of X-ray absorption spectroscopies (XANES, EXAFS). Electronic structure modifications are investigated by XPS and bulk paramagnetic point defects by ESR. The experimental data suggest that for light ions (O), irradiated quartz targets preserve their long range order. E' point defects, i.e. oxygen vacancy defects, are created along the ion path with a poor efficiency (2 GeV/E'), close to the efficiency of y rays. For heavier ions (Kr, Pb), irradiation damage consists of a trail of extended defects. These extended defects are composed of an amorphous SiO2 state. The density of these amorphized regions is about 4% larger than the common relaxed silica. This poorly densified silica appears similar to that obtained by neutron irradiation of quartz. E’ defects are mostly located inside these amorphous zones (>85%).  相似文献   

14.
A model of formation of secondary ion during ion-beam sputtering of a target is considered. The model is based on the so-called “statistical model” of formation of secondary ions at a certain critical distance from the surface, which was proposed earlier. The concept of dynamic temperature introduced in earlier publications for a cascade of collisions initiated by a primary ion, as well as a new interpretation of the interaction of the formed ion with the surface charge of opposite polarity, enabled us to derive an analytic expression for the ion formation probability. Comparison of the results of calculation with experimental data shows good agreement testifying the correctness of the proposed model.  相似文献   

15.
The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF–SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O. PACS 68.49; 79.20; 81.65; 82.80  相似文献   

16.
ABSTRACT

Stopping cross sections (SCS) for protons, alphas and Li ions are calculated with a modified form of our earlier work by incorporating a different electron density distribution of target materials; this involves four parameters – two projectile dependent and the rest two remain fixed. The prosed model has been tested for three stripped ion (H+, He2 + and Li3 +) projectiles and found that it describes quite satisfactorily the experimental SCS data from low energies with projectile velocities nearing v = Z1v0 (with Z1 as the atomic number and v0 the Bohr velocity) up to 100.0 MeV over a wide range of stopping media with atomic numbers Z2 =3–100.  相似文献   

17.
The atomic structure of amorphous Tb20Fe80 thin films has been studied by Extended X-ray Absorption Fine Structure (EXAFS) of both FeK and TbL III absorption edges. The local site geometry around Fe atoms shows predominantly Fe nearest neighbors with an Fe-Fe distance distribution centered on 2.50±0.02 Å and a coordination number of 9.1±1. In contrast, the radial structure function (RSF) obtained at the Tb edge is broad and asymmetric. The peak in the RSF corresponds to a Tb-Fe near neighbor distance of 2.94±0.1 Å with no evidence for Tb-Tb nearest neighbor coordination. The width and the shape of the RSF suggest that the Tb-Fe atomic environment is anisotropic and strained probably as a consequence of the growth process. This distorted atomic environment is suggested to be responsible for the magnetic anisotropy in these alloys. Thermal annealing at 200 °C leads to reduction inK u. We propose that this results from reordering of the Tb local environment such that the average structural anisotropy in the distribution is reduced. EXAFS data show that annealing at 400°C causes precipitation of bcc polycrystalline Fe. The addition of 7 at.% Au to the alloy prevents this recrystallization and preserves the amorphous state but does not prevent the structural relaxation which reducesK u at lower temperatures.  相似文献   

18.
The influence of the incidence angle of 30 keV Ar+ ions, ion fluence and target temperature on the sputtering yield and surface microgeometry of highly oriented pyrolytic graphite (UPV-1T) samples was experimentally studied. It was found that at fluences more than 5 × 1019 ion cm?2 the sputtering yield at room temperature in the range of the ion incidence angle from 0° to 80° is twice as small as the corresponding experimental data for both polycrystalline graphite and glassy carbon. The analysis of ion-induced relief permits us to suppose the topographical suppression mechanism of highly oriented pyrolytic graphite sputtering.  相似文献   

19.
Abstract

Earlier measurements of sputtering efficiency of polycrystalline targets (fraction of impinging ion energy leaving the target through sputtering and backscattering) have been extended to higher energies. Lead and copper targets were bombarded with several different projectiles with energies between 80 and 1200 keV. The sputtering efficiency decreases with increasing energy. This decrease is ascribed to the combined influence of changes in the scattering cross section with energy, and to electronic stopping. The results may be described as a function of the mass ratio M 2/M 1 and the reduced energy ? only.

The sputtering efficiency was measured as a function of angle of incidence of the bombarding ions. To ensure complete collection of sputtered and backscattered particles, it was possible to cover only the region of incidence angle from 0° to 45°. Targets of copper, silver, and lead were investigated with 17 different ion-target combinations. The sputtering efficiency increased with angle of incidence. This increase is described well by a simple interpolation formula by Sigmund.  相似文献   

20.
The role of material microstructure in the magnetic anisotropy of real nanostructures has been studied by the comparison of the magnetic behavior of arrays of amorphous and polycrystalline CoxSi1-x lines. From the experimental measurements of angular dependences of remanences parallel and perpendicular to the applied field we determine the angular dispersion of effective local easy axis of anisotropy. We have proved that amorphous lines have a dispersion of effective anisotropy axis much smaller than the polycrystalline samples. As a consequence, amorphous lines have a better defined magnetic behaviour, pointing the interest of the fabrication of nanostructures made of amorphous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号