首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
This paper is concerned with some nonlinear propagation phenomena for reaction–advection–diffusion equations in a periodic framework. It deals with travelling wave solutions of the equation $u_t =\nabla\cdot(A(z)\nabla u)\;+q(z)\cdot\nabla u+\,f(z,u),\qquad t\in\mathbb{R},\quad z\in\Omega,$ propagating with a speed c. In the case of a “combustion” nonlinearity, the speed c exists and it is unique, while the front u is unique up to a translation in t. We give a min–max and a max–min formula for this speed c. On the other hand, in the case of a “ZFK” or a “KPP” nonlinearity, there exists a minimal speed of propagation c*. In this situation, we give a min–max formula for c*. Finally, we apply this min–max formula to prove a variational formula involving eigenvalue problems for the minimal speed c* in the “KPP” case.  相似文献   

3.
This paper deals with front propagation for discrete periodic monostable equations. We show that there is a minimal wave speed such that a pulsating traveling front solution exists if and only if the wave speed is above this minimal speed. Moreover, in comparing with the continuous case, we prove the convergence of discretized minimal wave speeds to the continuous minimal wave speed.  相似文献   

4.
This paper is concerned with the spreading speeds of time dependent partially degenerate reaction-diffusion systems with monostable nonlinearity. By using the principal Lyapunov exponent theory, the author first proves the existence, uniqueness and stability of spatially homogeneous entire positive solution for time dependent partially degenerate reaction-diffusion system. Then the author shows that such system has a finite spreading speed interval in any direction and there is a spreading speed...  相似文献   

5.
The current paper is devoted to the study of spatial spreading dynamics of monostable equations with nonlocal dispersal in spatially periodic habitats. In particular, the existence and characterization of spreading speeds is considered. First, a principal eigenvalue theory for nonlocal dispersal operators with space periodic dependence is developed, which plays an important role in the study of spreading speeds of nonlocal periodic monostable equations and is also of independent interest. In terms of the principal eigenvalue theory it is then shown that the monostable equation with nonlocal dispersal has a spreading speed in every direction in the following cases: the nonlocal dispersal is nearly local; the periodic habitat is nearly globally homogeneous or it is nearly homogeneous in a region where it is most conducive to population growth in the zero-limit population. Moreover, a variational principle for the spreading speeds is established.  相似文献   

6.
7.
This paper is devoted to the study of pulsating travelling fronts for reaction‐diffusion‐advection equations in a general class of periodic domains with underlying periodic diffusion and velocity fields. Such fronts move in some arbitrarily given direction with an unknown effective speed. The notion of pulsating travelling fronts generalizes that of travelling fronts for planar or shear flows. Various existence, uniqueness and monotonicity results are proved for two classes of reaction terms. Firstly, for a combustion‐type nonlinearity, it is proved that the pulsating travelling front exists and that its speed is unique. Moreover, the front is increasing with respect to the time variable and unique up to translation in time. We also consider one class of monostable nonlinearity which arises either in combustion or biological models. Then, the set of possible speeds is a semi‐infinite interval, closed and bounded from below. For each possible speed, there exists a pulsating travelling front which is increasing in time. This result extends the classical Kolmogorov‐Petrovsky‐Piskunov case. Our study covers in particular the case of flows in all of space with periodic advections such as periodic shear flows or a periodic array of vortical cells. These results are also obtained for cylinders with oscillating boundaries or domains with a periodic array of holes. © 2002 Wiley Periodicals, Inc.  相似文献   

8.
For a reaction-diffusion system that serves as a 2-species Lotka-Volterra diffusive competition model, suppose that the corresponding reaction system has one stable boundary equilibrium and one unstable boundary equilibrium. Then it is well known that there exists a positive number c?, called the minimum wave speed, such that, for each c larger than or equal to c?, the reaction-diffusion system has a positive traveling wave solution of wave speed c connecting these two equilibria if and only if c?c?. It has been shown that the minimum wave speed for this system is identical to another important quantity - the asymptotical speed of population spread towards the stable equilibrium. Hence to find the minimum wave speed c? not only is of the interest in mathematics but is of the importance in application. It has been conjectured that the minimum wave speed can be determined by studying the eigenvalues of the unstable equilibrium, called the linear determinacy. In this paper we will show that the conjecture on the linear determinacy is not true in general.  相似文献   

9.
We study the asymptotic spreading of Kolmogorov–Petrovsky–Piskunov (KPP) fronts in space–time random incompressible flows in dimension d>1d>1. We prove that if the flow field is stationary, ergodic, and obeys a suitable moment condition, the large time front speeds (spreading rates) are deterministic in all directions for compactly supported initial data. The flow field can become unbounded at large times. The front speeds are characterized by the convex rate function governing large deviations of the associated diffusion in the random flow. Our proofs are based on the Harnack inequality, an application of the sub-additive ergodic theorem, and the construction of comparison functions. Using the variational principles for the front speed, we obtain general lower and upper bounds of front speeds in terms of flow statistics. The bounds show that front speed enhancement in incompressible flows can grow at most linearly in the root mean square amplitude of the flows, and may have much slower growth due to rapid temporal decorrelation of the flows.  相似文献   

10.
This work is concerned with a nonlocal reaction–diffusion system modeling the propagation dynamics of organisms owning mobile and stationary states in periodic environments. We establish the existence of the asymptotic speed of spreading for the model system with monotone birth function via asymptotic propagation theory of monotone semiflow, and then discuss the case for non-monotone birth function by using the squeezing technique. In terms of the truncated problem on a finite interval, we apply the method of super- and sub-solutions and the fixed point theorem combined with regularity estimation and limit arguments to obtain the existence of time periodic traveling waves for the model system without quasi-monotonicity. The non-existence proof is to use the results of the spreading speed. Finally, as an application, we study the spatial dynamics of the model with the birth rate function of Ricker type and numerically demonstrate analytic results.  相似文献   

11.

We study propagation direction of the traveling wave for the diffusive Lotka–Volterra competition system with bistable nonlinearity in a periodic habitat. By directly proving the strong stability of two semitrivial equilibria, we establish a new and sharper result on the existence of traveling wave. Using the method of upper and lower solutions, we provide two comparison theorems concerning the direction of traveling wave propagation. Several explicit sufficient conditions on the determination of the speed sign are established. In addition, an interval estimation of the bistable-wave speed reveals the relations among the bistable speed and the spreading speeds of two monostable subsystems. Biologically, our idea and insight provide an effective approach to find or control the direction of wave propagation for a system in heterogeneous environments.

  相似文献   

12.
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka–Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c? such that for each wave speed c?c?, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c<c? are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c>c?.  相似文献   

13.
This paper is concerned with the extension of the concepts and theories of traveling wave solutions of time and space periodic monostable equations to time recurrent and space periodic ones.&nbsp; It first introduces the concept of generalized traveling wave solutions of time recurrent and space&nbsp;periodic monostable equations, which extends the concept of periodic traveling wave solutions of time and space periodic monostable equations to time recurrent and space periodic ones.&nbsp;It then proves that in the direction of any unit vector \(\xi\), there is \(c^*(\xi)\) such that for any \(c&gt;c^*(\xi)\), a generalized traveling wave solution in the direction of \(\xi\) with averaged propagation speed \(c\) exists. It also proves that if the time recurrent and space periodic&nbsp;monostable equation is indeed time periodic, then \(c^*(\xi)\) is the minimal wave speed in the direction of&nbsp;\(\xi\)&nbsp;and the generalized traveling wave solution in the direction of&nbsp;\(\xi\)&nbsp;with averaged speed \(c&gt;c^*(\xi)\) is a periodic traveling wave solution with speed \(c\), which recovers the existing results on the existence of periodic traveling wave solutions in the direction of&nbsp;\(\xi\)&nbsp;with speed greater than the minimal speed in that direction.  相似文献   

14.
We study the Fisher–KPP equation with a free boundary governed by a one-phase Stefan condition. Such a problem arises in the modeling of the propagation of a new or invasive species, with the free boundary representing the propagation front. In one space dimension this problem was investigated in Du and Lin (2010) [11], and the radially symmetric case in higher space dimensions was studied in Du and Guo (2011) [10]. In both cases a spreading-vanishing dichotomy was established, namely the species either successfully spreads to all the new environment and stabilizes at a positive equilibrium state, or fails to establish and dies out in the long run; moreover, in the case of spreading, the asymptotic spreading speed was determined. In this paper, we consider the non-radially symmetric case. In such a situation, similar to the classical Stefan problem, smooth solutions need not exist even if the initial data are smooth. We thus introduce and study the “weak solution” for a class of free boundary problems that include the Fisher–KPP as a special case. We establish the existence and uniqueness of the weak solution, and through suitable comparison arguments, we extend some of the results obtained earlier in Du and Lin (2010) [11] and Du and Guo (2011) [10] to this general case. We also show that the classical Aronson–Weinberger result on the spreading speed obtained through the traveling wave solution approach is a limiting case of our free boundary problem here.  相似文献   

15.
In this paper, spreading speed and traveling waves for reaction–diffusion model with distributed delay and nonlocal effect without monotonicity are investigated. It is shown that there exists the spreading speed c which coincides with the minimal wave speed, and its limiting integral equation has an unique traveling wave with speed c > c, and no traveling wave with c < c. Moreover, the dependence of the spreading speed on the delay and the nonlocal effect is considered.  相似文献   

16.
We are interested in the time asymptotic location of the level sets of solutions to Fisher–KPP reaction–diffusion equations with fractional diffusion in periodic media. We show that the speed of propagation is exponential in time, with a precise exponent depending on a periodic principal eigenvalue, and that it does not depend on the space direction. This is in contrast with the Freidlin–Gärtner formula for the standard Laplacian.  相似文献   

17.
研究了一类一维空间周期格上的具有时滞和全局交互作用的微分系统的front⁃like整体解.通过建立适当的比较原理,并融合不同方向的波前解与连接稳定态和不稳定态的空间周期解,构造了front⁃like整体解并证明了一些定性性质.与波前解相比,front⁃like整体解能够展示出新的动力学行为.  相似文献   

18.
This work is concerned with the spatiotemporal propagation phenomena for a time-periodic reaction-diffusion susceptible-infectious (SI) epidemic model with treatment in terms of the asymptotic speed of spread and periodic traveling waves. First, the asymptotic speed of spread c $c^*$ is characterized and the spreading properties of the model are analyzed by combining the periodic principal eigenvalue problem, comparison method, and the uniform persistence idea for a dynamical system. Second, by constructing suitable super- and subsolutions for truncation problems corresponding to the traveling wave system, the existence of periodic traveling waves is established via the fixed point theorem twice. It turned out that the asymptotic speed of spread coincides with the minimum wave speed of periodic traveling waves. Finally, via numerical simulation, the effects of some important parameters (such as diffusion rate, treatment rate, etc.) on the spreading speed are discussed, and the asymptotic properties of the periodic traveling waves are explored.  相似文献   

19.
In this paper, we study the propagation dynamics for a class of integrodifference competition models in a periodic habitat. An interesting feature of such a system is that multiple spreading speeds can be observed, which biologically means different species may have different spreading speeds. We show that the model system admits a single spreading speed, and it coincides with the minimal wave speed of the spatially periodic traveling waves. A set of sufficient conditions for linear determinacy of the spreading speed is also given.  相似文献   

20.
通过构造上、下控制函数,结合上、下解方法及相应的单调迭代方法研究了一类时滞反应扩散方程,证明了在反应项非单调时,如果一雏边值问题存在一对周期(或概周期)上、下解,则方程一定存在唯一的周期(或概周期)解.并给出了二维边值问题周期(或概周期)解存在唯一性的充分条件.推广了已有的一些结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号