首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of star-shaped poly(acrylic acid) having various numbers of arms (5, 8, and 21) and a strong cationic polyelectrolyte, viz., poly( N-ethyl-4-vinylpyridinium bromide), was examined at pH 7 by means of turbidimetry and dynamic light scattering. Mixing aqueous solutions of the oppositely charged polymeric components was found to result in phase separation only if their base-molar ratio Z = [N+]/[COO (-) + COOH] exceeds a certain critical value ZM ( ZM < 1); this threshold value is determined by the number of arms of the star-shaped polyelectrolyte and the ionic strength of the surrounding solution. At Z < ZM, the homogeneous aqueous mixtures of the oppositely charged polymeric components contain two types of complex species clearly differing in their sizes, with the fractions of these species appearing to depend distinctly on the number of arms of the star-shaped poly(acrylic acid), the base-molar ratio of the oppositely charged polymeric components in their mixtures, and the ionic strength of the surrounding solution. The small complex species (major fraction) are assumed to represent the particles of the water-soluble interpolyelectrolyte complex whereas the large complex species (minor fraction) are considered to be complex aggregates.  相似文献   

2.
The effect of a low-molecular-mass salt on the properties of interpolyelectrolyte complexes formed as a result of interactions between poly(diallyldimethylammonium chloride) and copolymers of maleic acid with propylene or α-methylstyrene in their salt containing non-stoichiometric mixtures has been studied. Properties of such interpolyelectrolyte complexes were found to be determined by the chemical nature of the polyelectrolytes and by the salt concentration. The effect of salt on the surface modification of silica particles via their interactions with interpolyelectrolyte complexes has been examined. Two different ways of the surface modification of silica particles were used: (i) silica particles were contacted with previously prepared interpolyelectrolyte complexes and (ii) silica particles were contacted with cationic polyelectrolyte at first and then anionic polyelectrolyte was added. The efficiency of the surface modification was shown to be also dependent on the salt concentration and the chemical nature of polyelectrolytes. Turbidimetry, quasi-elastic light scattering, laser microelectrophoresis, and polyelectrolyte titration were used to characterize studied systems.  相似文献   

3.
The influence of the concentration of low-molecular-mass salt additives in the reaction medium on the size characteristics of copper nanoparticles in sols formed through the reduction of Cu2+ ions in the presence of a cationic polyelectrolyte and nonionogenic polymers with hydrophilic (poly(ethylene oxide) and hydrophobic (poly(N-vinylpyrrolidone)) main chains has been studied. Formation of sols with a narrow size (diameter) distribution of metal nanoparticle indicates the pseudomatrix character of formation of the metal phase under the studied conditions. Effects of the neutral salt and its concentration in the reaction medium on the synthesis of copper sols and on the mean size of metal nanoparticles are related to a change in the nature or character (when oppositely charged polyelectrolyte macromolecules and copper nanoparticles are involved in interaction) of noncovalent interactions stabilizing the macromolecule-nanoparticle complex on passage from the salt-free aqueous medium to the aqueous-saline medium with a sufficiently high concentration of the neutral salt.  相似文献   

4.
In this work the effect of ionic strength on the adsorption behavior of cationic polyelectrolyte (acrylamide-acrylamidopropyltrimethylammonium chloride) and negatively charged silica particles has been studied by means of ellipsometry. The adsorption of the polyelectrolyte was observed to increase with increasing salt concentration, a behavior typical for polyelectrolytes with a screening-reduced solvency and a nonelectrostatic affinity for the surface. A similar dependence on the ionic strength was observed when studying the electrolyte effect on the nanoparticle adsorption to the preadsorbed polyelectrolyte film, suggesting that the polyelectrolyte surface conformations largely govern the binding capacity of the particles to the surface.  相似文献   

5.
We report a study of mixtures of initially oppositely charged particles with similar size. Dispersions of silica spheres (negatively charged) and alumina-coated silica spheres (positively charged) at low ionic strength, mixed at various volume ratios, exhibited a surprising stability up to compositions of 50% negative colloids as well as spontaneous repeptization of particles from the early-stage formed aggregates. The other mixtures were found to contain large heteroaggregates, which were imaged using cryogenic electron microscopy. Electrophoretic mobility, electrical conductivity, static and dynamic light scattering and sedimentation were studied as a function of volume fraction of the mixed dispersions to investigate particle interactions and elucidate the repeptization phenomenon.  相似文献   

6.
Cluster composition in aggregation processes of multiple particle species can be dynamically determined by flow cytometry if particle populations are fluorescently labeled. By flow cytometric single particle analysis, aggregates can be characterized according to the exact amount of constituent particles, allowing the detailed and separate quantification of homo- and heteroaggregation. This contribution demonstrates the application of flow cytometry for the experimental detection of heteroaggregation in a binary particle mixture of oppositely charged polystyrene (PS) particles and Rhodamine-B labeled melamine-formaldehyde (MF-RhB) particles. Experiments with different particle concentration, temperature, mixing mode, ionic strength and particle mixing ratio are presented. Aggregation kinetics are enhanced with increasing particle concentration and temperature as well as by increased shear of mixing. These results represent well-known behavior published in previous investigations and validate the performance of flow cytometry for probing heteroaggregation processes. Physical insight with a novel level of detail is gained by the quantification of de- and restabilization phenomena. At low ionic strength, "raspberry"-type aggregates with PS cores are formed by primary heteroaggregation. At moderate particle number ratios, these aggregates are electrostatically destabilized and form more complex aggregates in a secondary heteroaggregation process. At high particle number ratios (> or =50:1), the raspberry-type aggregates are electrostatically restabilized and secondary heteroaggregation is prevented. The dynamic change of aggregate charge was verified by zeta-potential measurements. The elevation of salt concentration over several orders of magnitude retards aggregation dynamics, since attractive interparticle forces are diminished by an electrostatic double layer. This indicates that heteroaggregation induced by attractive interparticle forces is faster than aggregation due to random Brownian motion. Destabilization at high ionic strength is facilitated by charged ions and no longer by MF-RhB coverage. This results in a species independent one step aggregation process.  相似文献   

7.
The kinetics of the adsorption of a cationic polymer flocculant onto negatively charged polystyrene latex (PSL) particles were measured by means of electrophoresis as a function of the molecular weight of the polyelectrolyte and the ionic strength of the solution. In the experiment, the dispersion of bare PSL particles was mixed with a polyelectrolyte solution by means of end-over-end rotation in which the mixing intensity was evaluated in terms of the collision frequency between the colloidal particles. The rate of electrophoretic mobility of a PSL particle, which remained as a singlet, was measured against the mixing steps, which was equivalent to the time elapsed after the onset of flocculation. The shape of the kinetic curves is typical: a linear increase for a short period followed by a plateau, implying the saturation of the colloidal surface by the adsorbed polyelectrolyte. In the case of low ionic strength, the plateau value was dependent on the molecular weight of the polyelectrolyte. That is, a lower plateau value was detected when the molecular weight of the polyelectrolyte was smaller and its concentration was lower. However, the amount of adsorption was kinetically controlled only for the case of higher molecular weight. In the case of high ionic strength, the plateau value of electrophoresis was constant, regardless of the polyelectrolyte concentration and molecular weight. These data will ultimately be useful in further analysis of the flocculation behavior of colloidal particles with a polyelectrolyte.  相似文献   

8.
Colloidal dispersions of polyelectrolyte complexes were prepared in aqueous solutions. We have used mixtures containing the strongly charged anionic polyelectrolyte sodium polystyrene sulfonate (PSS) and the weak cationic polyelectrolyte polyallylamine hydrochloride (PAH). Both polymers have the same molecular weight. The complexes were obtained by adding drop by drop a solution of the anionic polyelectrolyte to excess cationic polyelectrolyte. In these conditions, sodium polystyrene sulfonate and polyallylamine hydrochloride self-assembled in nanometer-range complexes; the self-assembly is driven by electrostatic interactions, as well as by entropy changes due to counterion release. The electrostatic interactions were controlled in several ways: by changing the C PSS/C PAH concentration ratio, by modifying the pH (and thus the protonation degree of polyallylamine hydrochloride), and by adding sodium chloride (screened interactions). Dynamic light scattering experiments demonstrated that the hydrodynamics radius of the polyelectrolyte complex increases, changing from soluble to insoluble complex formation, when some physicochemical parameters are increased: the concentration ratio between polyelectrolytes, the sodium chloride concentration, and pH. Zeta potential measurements, as a function of the C PSS/C PAH concentration ratio, as well as of pH and ionic strength, allow us to state that the resulting particles have a structure constituted by a neutral core surrounded by a positively charged shell. The polyelectrolyte complexes have globular shapes, as observed by electron microscopy.  相似文献   

9.
 The sorption of solved organic molecules such as p-nitrophenol or dyes on previously formed nanoparticles based on polyelectrolyte/micelle complexes or polycation/polyanion complexes was studied. It could be shown that the sorption capability strongly depends on the structure and properties of the complex particles. Investigations have been made with complex particles that differ in their hydrophobic/hydrophilic structure, size and net charge. Such complex aggregates could be prepared by mixing the cationic surfactant dodecylamido-ethyldimethylbenzylammonium chloride, the polycations poly(diallyldimethylammonium chloride) or poly(methacryloyloxyethyldimethylbenzylammonium chloride) and the copolymers of maleic acid with propene or methylstyrene as anionic components. It is found that the sorption capability increases with increasing molar mass and hydrophobic properties of the components used. In addition, the concentration ratio c polym/c org.poll that was required to reach optimal sorption conditions could be decreased by the use of macromolecules with high molar masses. The best results were obtained by using cationic stabilized complex particles formed with high-molar-mass polycations as sorbents for anionic dye molecules. Received: 10 November 1999 Accepted: 24 February 2000  相似文献   

10.
A novel technique of particle monolayer fabrication based on hydrophobic interactions in aqueous systems is described in this paper. When alkylated glass plates modified with various silane coupling agents were immersed in aqueous dispersions of submicron-sized polystyrene particles of cationic or anionic surface charges, cationic particle monolayers containing active ester groups were effectively formed at the plate surfaces, whereas no anionic particles were self-organized on the plate surfaces. The coverage of the plates with cationic particles and the morphology of the monolayers varied with the hydrophobicities of the particles and plates as well as with the ionic strength of the medium and temperature. For less hydrophobic methylated glass surfaces modified with methyltriethoxysilane, cationic particles were self-organized at relatively regular intervals, whereas they were self-organized in the form of aggregates for the more hydrophobic octadecylated glass plates treated with n-octadecyltriethoxysilane. Closely packed monolayers were fabricated by adjusting ionic strength and temperature. Fluorescence labelling of cationic particle monolayers was successfully accomplished by the reaction of remaining active ester groups on the monolayers with a fluorescence probe containing amino groups. Cationic particle monolayers were physically stabilized by heating above the glass transition temperature (T g) of the particles.  相似文献   

11.
This study investigates the fluorescence quenching of a poly(p-phenyleneethynylene) (1) based polyelectrolyte by positively charged and neutral macromolecules. This work shows that the change in the fluorescence yield of 1 depends on a number of factors, including electrostatic, hydrophobic, and energy transfer interactions with the quencher and also changes in the solution conditions such as concentration and ionic strength. The fluorescence quenching is attributed to the formation of aggregates that form upon addition of different quenchers to a solution of 1 and/or the solution conditions. The extent of 1's aggregation is shown to depend on the type of interaction between the polymer and the quencher, the concentration of the polymer, and the ionic strength of the solution.  相似文献   

12.
The aggregation behaviors of the cationic and anionic (catanionic) surfactant vesicles formed by didodecyldimethylammonium bromide (DDAB)/sodium bis(2-ethylhexyl) phosphate (NaDEHP) in the absence and presence of a negatively charged polyelectrolyte are investigated. The amount of the charge on the vesicle can be tuned by controlling the DDAB/NaDEHP surfactant molar ratio. The charged vesicular dispersions made of DDAB/NaDEHP are mixed with a negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on the polyelectrolyte/vesicle charge ratio, complex flocculation or precipitation occurs. Characterization of the catanionic vesicles and the complexes are performed by transmission electron microscope (TEM), Cryo-TEM, dynamic light scattering (DLS), conductivity, turbidity, zeta potential, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS) measurements.  相似文献   

13.
An integral equation theory has been used as the basis for studying the structure of dispersions containing charged colloidal particles: globular protein molecules with a nonzero dipole moment, a polyelectrolyte and a low-molecular salt. It is demonstrated that there is an effective attraction between charged colloidal particles, which increases in the presence of charged polymer chains. The influence of the length of polyelectrolyte chains and of salt concentration on the partial structure factor of colloidal particles was studied.  相似文献   

14.
The phase behavior of mixed acidic solutions of the high-molecular-mass cationic polyelectrolyte poly(1,2-dimethyl-5-vinylpyridinium methyl sulfate) and PAA at a PAA-to-polycation ratio of <1 base-mol/base-mol in narrow pH ranges at 6–30°C is studied. The reduction of Cu2+ ions in solutions and dispersions of interpolyelectrolyte complexes yields copper nanoparticles. It is shown that the mean-square diameters of nanoparticles formed in solutions of nonstoichiometric polyelectrolyte complexes are much smaller than those obtained in solutions of each component of the polyelectrolyte complex under the same conditions. These values decrease as the thermodynamic quality of the solvent with respect to the polymer of the pseudomatrix nonstoichiometric polyelectrolyte complex worsens. The experimental data may be explained in terms of the theoretical concept of pseudomatrix formation of a new phase in polymer solutions.  相似文献   

15.
We report on interpolyelectrolyte complexes (IPECs) formed by micelles of ionic amphiphilic diblock copolymers with polyisobutylene (PIB) and poly(sodium methacrylate) (PMANa) blocks interacting with quaternized poly(4-vinylpyridine) (P4VPQ). The interpolyelectrolyte complexation was followed by turbidimetry and small angle neutron scattering (SANS). The data obtained by means of a combination of SANS, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM) provide evidence on the core-shell-corona structure of the complex species with the shell assembled from fragments of electrostatically bound PMANa and quaternized P4VPQ fragments, original PIBx-b-PMAAy micelles apparently playing a lyophilizing part. The complex formation is followed by potentiometric titration as well. This process is initially kinetically controlled. In the second step larger aggregates rearrange in favor of smaller complexes with core-shell-corona structure, which are thermodynamically more stable. An increase in ionic strength of the solution results in dissociation of the complex species as proven by SANS and analytical ultracentrifugation (AUC). This process begins at the certain threshold ionic strength and proceeds via a salt-induced gradual release of chains of the cationic polyectrolyte from the complex species.  相似文献   

16.
The interaction of aluminum polyhydroxochloride sol and poly(4-vinylbenzene sulfonic acid) sodium salt is studied. It is found that, in dilute aqueous solutions at pH 4.6, aluminum polyhydroxochloride sol and poly(4-vinylbenzene sulfonic acid) sodium salt form insoluble polymer-colloid complexes of steady compositions. Potentiometric titration data show that the interaction between particles of aluminum polyhy-droxochloride sol and linear macromolecules of the polyelectrolyte occurs via salt bonds formed between unlikely charged groups on the surface of particles and units of the linear polyelectrolyte. The composition of the polymer-colloid complex is determined, and the degree of conversion for the reaction of aluminum poly-hydroxochloride sol and poly(4-vinylbenzene sulfonic acid) sodium salt is estimated. The influence of various polyelectrolytes on the stability of the polymer-colloid complex is studied.  相似文献   

17.
For the first time, the polyelectrolyte complex (PEC) formation tool was used for preparation of core‐shell nanoparticles form the natural polyampholyte N‐carboxyethylchitosan (CECh) and weak polycationic (protonated) polyoxyethylene‐b‐poly[2‐(dimethyl‐amino)ethyl methacrylate] (POE‐b‐PDMAEMA) diblock copolymers. The performed dynamic light scattering analyses revealed that nanoparticles with a PEC core and a POE shell could be formed at mixing ratio between the oppositely charged groups equal to 1/1 depending on CECh molar mass, polymerization degree of PDMAEMA block and ionic strength. The results were confirmed by the performed AFM and cryo‐TEM analyses. When high molar mass CECh was used, core‐shell nanoparticles were obtained with the diblock copolymer of the shortest PDMAEMA block at ionic strength (I) of 0.01. At ionic strength value close to the physiological one (I = 0.1) secondary aggregation occurred. Spherical nanoparticles at I = 0.1 were obtained upon lowering the CECh molar mass. Depending on the polymer partners and medium parameters the size of the obtained particles varied from 60 to 600 nm. The X‐ray photoelectron spectra evidenced the hydrophilic POE‐block shell—coacervate CECh/PDMAEMA‐block core structure. The nanoparticles are stable in a rather narrow pH range around 7.0, thus revealing the high pH‐sensitivity of the obtained core‐shell particles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2105–2117, 2009  相似文献   

18.
Peculiarities of the formation of polyelectrolyte complexes based on cationic and anionic copolymers of acrylamide having different macromolecule charge densities on the surfaces of kaolin particles in highly concentrated salt solution are investigated. The interactions of the copolymers with the clay particle surface and with each other are studied by electrokinetic and IR spectroscopy methods. The rheological properties of kaolin suspensions are investigated in a salt solution in the presence of the polyelectrolytes. The flocculation ability of the polyelectrolytes and their binary mixtures with respect to clay-salt dispersion is estimated. The mechanism for the formation of polyelectrolyte complexes on the surface of clay particles is discussed. It is shown that the complexation of oppositely charged polyelectrolytes on the surfaces of clay particles intensifies the flocculation of clay-salt dispersions.  相似文献   

19.
Precipitation or coprecipitation of polyelectrolytes has been largely investigated. However, the precipitation of polyelectrolytes via addition of charged and non‐charged surfactants has not been systematically studied and reported. Consequently, the aim of this work is to investigate the effect of different surfactants (anionic, cationic, non‐charged and zwitterionic) on the precipitation of cationic and anionic polymethylmethacrylate polymers (Eudragit). The surfactants effect has been investigated as a function of their concentration. Special attention has been dedicated to the CMC range and to the colloidal characterization of the formed dispersions. Moreover, the effect of salt (NaCl) and pH was also addressed. It is pointed out that non‐ionic and zwitterionic surfactants do not interact with charged Eudragit E100 and L100. For oppositely charged Eudragit E100/SDS and Eudragit L100/CTAB, precipitation occurs, and the obtained dispersions have been characterized in terms of particle size distribution and zeta potential. It was established that the binding of SDS molecules to Eudragit E100 polymer chains is made through the negative charges of the surfactant heads under the CMC value whereas binding of CTAB to Eudragit L100 chains is made at a CTAB concentration 5 times above its CMC. For Eudragit E100/SDS system, a more acidic medium induces aggregation. A same result was observed for the Eudragit L100/CTAB at a more basic pH. Moreover, it was observed that increasing salt concentration (higher than 100 mM) led to aggregation as generally observed for polycations/anionic surfactant systems.  相似文献   

20.
The stability of insoluble polyelectrolyte complexes formed by various carboxyl-containing polyanions with a positively charged partner—a linear polycation or protein—has been studied by means of turbidimetric titration. In most cases, acidification of the reaction medium leads to a significant strengthening of complexes against the action of the added salt in neutral or weakly acidic media. The data concerning the effect of the chemical nature of polymer components, the degree of polymerization, the density of charge, and the structure of their chains on the pH-dependent profiles of complex dissociation provide evidence that this effect is related to stabilization of the polyelectrolyte complex through the system of hydrogen bonds formed by carboxyl groups of a partially charged polyanion incorporated into the complex. Owing to a sharp and reversible change in the stability of systems at a pH and ionic strength of solution that are favorable for functioning of biopolymers (proteins, enzymes, antibodies, and nucleic acids), polycarboxylate polyelectrolyte complexes offer promise for solving practically important problems, for example, in biotechnology for separation of biological mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号