首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Monodisperse, cationic polymer particles bearing quaternary ammonium groups effectively self-organized on hydrophobic solid substrates such as alkylated glass plates and polymer films to form particle monolayers. With an increase of the particle surface charge density, the surface coverage decreased and the morphology of particle monolayers changed from aggregated type to dispersed type. The dispersed type of particle monolayers having a relatively regular particle distance was formed at higher temperature. The self-organization behaviors on alkylated glass plates were different from those on unmodified glass plates through electrostatic interaction. The formation of particle monolayers on alkylated glass plates occurred only over a certain latex concentration range in contrast with that on unmodified glass plate. The adhesive strength of particle monolayers was enhanced by annealing at temperatures above the glass transition temperature (T g) of the particles. Lens-shaped particle monolayers were fabricated by annealing the dispersed type of particle monolayers.  相似文献   

2.
The template function of cationic particle monolayers bearing quaternary ammonium groups on their surfaces towards anionic colloids was investigated in this paper. Monodispersed cationic polymer particles having quaternary ammonium groups were self-organized on octadecylated glass plates through hydrophobic interaction. The morphology of the resulting particle monolayers was changed by tuning hydrophilic–hydrophobic balance of particles to fabricate aggregated type and dispersed type of particle monolayers. Gold and silver colloids were selectively deposited onto the particle monolayers through electrostatic interaction. The deposited gold and silver colloids on particle monolayers showed plasmon absorbance. Fluorescent silica colloids were also selectively deposited on particle monolayers to permit fluorescence labeling of the particle monolayers. Cationic particle monolayers fabricated on hydrophobic solid octadecylated were found to effectively work as templates for the deposition of above mentioned inorganic colloids.  相似文献   

3.
Self-organization of cationic polymer particles through hydrophobic interaction on polymer films in aqueous system and characteristic properties of the resulting particle monolayers were investigated. Cationic polymer particles bearing quaternary ammonium groups on their surfaces effectively self-organized on polymer films. With an increase of the particle surface charge density, the surface coverage and average aggregate size (N a) decreased. The surface coverage control was accomplished by tuning the ionic strength of the media. The wettability of polymer films for water was imparted by the formation of particle monolayers on them. Annealing of the particle monolayers resulted in the increase of the adhesive strength, while the wettability for water was lost. Further improvements of both wettability and adhesive strength of particle monolayers were achieved by the immobilization of silica colloids on the particle monolayers. This method would be effective for the hydrophilization of polymer films.  相似文献   

4.
Monodispersed cationic polymer particles with sulfonium groups and active ester groups at their surfaces were prepared by emulsifier-free emulsion copolymerization of styrene (ST) with a water-soluble active ester monomer, methacryloyloxyphenyldimethylsulfonium methylsulfate (MAPDS). The cationic polymer particle monolayers were fabricated on unmodified and aminated glass plates by electrostatic interactions and chemical reactions, respectively. The polymer particles were immobilized onto unmodified glass plates at relatively regular intervals in the absence of electrolytes, and the morphology of particle monolayers on the glass plates was changed with solid content of latex, electrolyte and cationic surfactant concentration. The polymer particles were immobilized onto aminated glass plate as aggregates by controlling the pH of latex and electrolyte concentration. Remaining active ester groups of the particle monolayers were confirmed to react easily with primary amino compounds.  相似文献   

5.
Submicron-sized cationic polystyrene shell particles with active ester groups were effectively self-assembled on hydrophobic surfaces of cross-linked polystyrene (PST) particles, uncharged core particles with ca. 8.5-µm diameter in aqueous systems. The hydrophobic interactions between the shell particles and core particles play a key role in heterocoagulation. The resulting heterocoagulates were highly physically stable in water, and the morphology was controlled by several factors including the solid content of latex, self-assembling time, and electrolyte concentration. Composite polymer particles with a core–shell structure were successfully obtained from the heterocoagulates by heat treatment for 3 h at a temperature above the glass transition temperature (Tg) of the cationic polymer shell particles.  相似文献   

6.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

7.
In the case of cationic polystyrene latex, the adsorption of anionic surfactants involves a strong electrostatic interaction between both the particle and the surfactant, which may affect the conformation of the surfactant molecules adsorbed onto the latex-particle surface. The adsorption isotherms showed that adsorption takes place according to two different mechanisms. First, the initial adsorption of the anionic surfactant molecules on cationic polystyrene surface would be due to the attractive electrostatic interaction between both ionic groups, laying the alkyl-chains of surfactant molecules flat on the surface as a consequence of the hydrophobic interaction between these chains and the polystyrene particle surface, which is predominantly hydrophobic. Second, at higher surface coverage the adsorbed surfactant molecules may move into a partly vertical orientation with some head groups facing the solution. According to this second mechanism the hydrophobic interactions of hydrocarbon chains play an important role in the adsorption of surfactant molecules at high surface coverage. This would account for the very high negative mobilities obtained at surfactant concentration higher than 5×10–7 M. Under high surface-coverage conditions, some electrophoretic mobility measurements were performed at different ionic strength. The appearance of a maximum in the mobility-ionic strength curves seems to depend upon alkyl-chain length. Also the effects of temperature and pH on mobilities of anionic surfactant-cationic latex particles have been studied. The mobility of the particles covered by alkyl-sulphonate surfactants varied with the pH in a similar manner as it does with negatively charged sulphated latex particles, which indicates that the surfactant now controls the surface charge and the hydrophobic-hydrophilic character of the surface.Dedicated to the memory of Dr. Safwan Al-Khouri IbrahimPresented at the Euchem Workshop on Adsorption of Surfactants and Macromolecules from Solution, Åbo (Turku), Finland, June 1989  相似文献   

8.
Abstract

This review analyzes various ways by which the surfaces of clay particles and related minerals can be non‐covalently modified, as well as some of the analytical approaches with which these surface modifications can be measured and quantified. Among the principal methods of modification of the surface properties of clays and other metal oxide surfaces is treatment with cationic surfactants comprising long‐chain alkyl groups. Using the Cassie equation, the percentage coverage by alkyl groups can be ascertained, from advancing contact angle data. Also, by measuring both advancing and retreating contact angles (e.g., with drops of water) on various surfaces, the percentage liquid coverage of such surface (or, if one wishes, the percentage contamination by the contact angle liquid) can be ascertained, using the Cassie equation. It was found that talc, treated with octadecyl amine (OA) became 100% covered with octadecyl groups when mildly heated with 1 wt.% OA. Treatment with higher concentrations did not increase the coverage, but gave the appearance as if the particles were covered with pentyl, not octadecyl groups, judging by the lowering of the apolar surface tension component of the treated talc surface. Coating of glass or mica surfaces with hexadecyl groups, via hexadecyl‐quaternary ammonium groups, yielded about 42% coverage. As an improvement, coating with hexadecyl cationic surfactants yielded 82% coverage. However, when coating was done by application of pre‐compressed monolayers formed on a Langmuir trough, 100% coverage (of eicosyl groups) could be achieved. Finally, if solidity of attachment, in addition to 100% coverage, is needed (as is very desirable in coatings applied to mica‐covered half cylinders in Israelachvili's force balance), the compressed Langmuir trough layer approach, coupled to a further 2 hours worth of annealing at 100°C yields the most robust attachment, as shown by Wood and Sharma (Wood, J.; Sharma, R. How long is the long‐range hydrophobic attraction. Langmuir 1995a, 11, 4797–4802). There are two other, totally different ways of making hydrophilic mineral particles more hydrophobic. The first one is by addition of plurivalent cations (e.g., Ca2+, La3+) to negatively charged inorganic particles, such as ground glass, ground calcite, or montmorillonite. When such initially hydrophilic, negatively charged particles, in stable aqueous suspension, have their negative surface potential diminished by the addition of small amounts of plurivalent cations, the particles become hydrophobic, and flocculate (Wu, W.; Giese, R.F.; van Oss, C.J. Linkage between ζ‐potential and electron donicity of charged polar surfaces 1. Implications for the mechanism of flocculation of particle suspensions with plurivalent counterions. Colloids. Surfaces. A 1994, 89, 241–252) even though the electrostatic repulsion energy still exceeds the mutual van der Waals attraction, thus furnishing a new and drastically modified explanation of the Schultze‐Hardy effect. Finally, grinding hydrophilic solids or particles makes them hydrophobic by causing a strong decrease in their surface electron‐donicity, most likely as a consequence of an increased liberation of electron‐accepting sites through diminution, causing the neutralization of a substantial part of the electron‐donating sites which, prior to grinding, were responsible for the material's hydrophilicity.  相似文献   

9.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

10.
The interaction of fluorocarbon‐ containing hydrophobically modified sodium polyacrylic acid (FMPAANa) (0.5 wt%) with various surfactants (anionic, nonionic and cationic) has been investigated by rheological measurements. Different rheological behaviors are displayed for ionic surfactants and nonionic surfactants. Fluorinated surfactants have stronger affinity with polyelectrolyte hydrophobes comparing with hydrogenated surfactants. The hydrophobic association of FMPAANa with a cationic surfactant (CTAB) and a fluorinated nonionic surfactant (FC171) is much stronger than with a nonionic surfactant (NP7. 5) and an anionic surfactant (FC143). Further investigation of the effects of temperature on solution properties shows that the dissociation energy Em is correlated to the strength of the aggregated junctions.  相似文献   

11.
We use molecular dynamics simulations to investigate the solvent mediated attraction and drying between two nanoscale hydrophobic surfaces in aqueous salt solutions. We study these effects as a function of the ionic charge density, that is, the ionic charge per unit ionic volume, while keeping the ionic diameter fixed. The attraction is expressed by a negative change in the free energy as the plates are brought together, with enthalpy and entropy changes that both promote aggregation. We find a strong correlation between the strength of the hydrophobic interaction and the degree of preferential binding/exclusion of the ions relative to the surfaces. The results show that amplification of the hydrophobic interaction, a phenomenon analogous to salting-out, is a purely entropic effect and is induced by high-charge-density ions that exhibit preferential exclusion. In contrast, a reduction of the hydrophobic interaction, analogous to salting-in, is induced by low-charge-density ions that exhibit preferential binding, the effect being either entropic or enthalpic. Our findings are relevant to phenomena long studied in solution chemistry, as we demonstrate the significant, yet subtle, effects of electrolytes on hydrophobic aggregation and collapse.  相似文献   

12.
13.
In this paper, how chitosan hydrogel beads were modified by anionic surfactants (SDS, SDOS, SDBS, AOT, and DTM-12) and then used for the adsorption and removal of an anionic dye (congo red) from aqueous solutions were described. The effect of surfactant concentration, surfactant ionic head-group, and surfactant hydrophobic tail were investigated in detail. The result revealed the modified CS beads all had the obviously higher adsorption capacity than CS beads. Compared to the ionic head-group, the hydrophobic tail of the surfactant plays more important role in the adsorption, and a high adsorption capacity was observed for CS/AOT beads and CS/DTM-12 beads (both with two hydrophobic tails). The Sips isotherm model showed a good fit with the equilibrium experimental data, and the values of the heterogeneity factor (n) indicated heterogeneous adsorption. The adsorption kinetics analysis indicated that the pseudo-second-order rate model could better describe the adsorption process than the pseudo-first-order rate model.  相似文献   

14.
Novel dipeptide-grafted polymeric nanoparticles were prepared by grafting the dipeptide (Gly-Gly) to a block copolymer backbone, comprised of styrene-alt-(maleic anhydride) and styrene. In aqueous solution PSt130-b-P(St-alt-MAn)58-g-GlyGly26 formed stable dispersed spherical aggregates of ca. 75 nm. The critical micelle concentration for the dipeptide-grafted block copolymer self-aggregates was 6.3 × 10−3 mg mL−1. The zeta-potential of the aggregates was estimated experimentally. The dispersed polymer nanoparticles effectively self-organized to form stable nanoparticle thin films on hydrophobic solid surfaces, such as octadecyltrichlorosilane modified glass (OTS-G). As the ionic strength and temperature of the polymer suspension increased the surface coverage of the nanoparticle film increased and its hydrophobicity (water contact angle) decreased. Significantly less bovine serum albumin (BSA) adsorbed to nanoparticles modified surfaces with compared OTS-G surfaces. Diglycine grafted polymer nanoparticles have the potential to be used as a novel platform to study protein-protein interactions and to control fouling.  相似文献   

15.
Colloidal dispersions of an interpolyelectrolyte complex were prepared by mixing dilute aqueous solutions of poly(dimethyldiallylammonium chloride) and the sodium salt of the alternating copolymer of maleic acid propene in amounts providing about a threefold excess of the charged groups of the cationic polyelectrolyte over those of the anionic polyelectrolyte. These dispersions were examined by means of analytical sedimentation, quasielastic light scattering, and laser Doppler microelectrophoresis. The experimental results obtained suggest that the particles of the interpolyelectrolyte complex are multicomplex aggregates bearing cationic charge. Such aggregates were assumed to consist of a hydrophobic core formed by coupled oppositely charged macromolecules and a hydrophilic shell formed by cationic macromolecules. Hydrodynamic and electrophoretic properties of these aggregates were found to be rather sensitive to variations in the ionic strength of the surrounding medium: with rising salt concentration, their sedimentation coefficient and hydrodynamic size increase, these increases becoming more strongly pronounced at higher salt concentrations, whereas their electrophoretic mobility gradually decreases. The salt effects revealed suggest that the aggregation level of the particles of the interpolyelectrolyte complex rises in response to an increase in the ionic strength of the surrounding medium. This phenomenon was associated with the salt-induced decrease of the stabilizing effect of the hydrophilic shells that protect such particles from progressive aggregation. Received: 15 May 1998 Accepted in revised form: 28 August 1998  相似文献   

16.
Isotachophoresis and viscometric measurements were performed on aqueous dispersions of non-stoichiometric polyelectrolyte complexes in order to elucidate the surface charge situation of the complex particles in dependence on component charge density, ratio of cationic to anionic groups in the complex, and pH and ionic strengths of the ambient medium. Components for complex formation were acryl-based anionic and cationic polyelectrolytes of the pendent type. From our results, an amphoteric character of the polyelectrolyte complex particles can be concluded, with an isoelectric point characterized by zero mobility and a minimum in reduced viscosity spec/c of the particle dispersion, and with the sign of net surface charge depending on ambient pH and component charge density. The influence of ionic strength on the spec/c vs pH plots can be interpreted by assuming a competition between salting-out and electrostatic shielding effects. No correlation could be established between the overall molar ratio of cationic to anionic groups and the isoelectric point of the complex particles, which obviously indicates a different composition of surface and bulk of the polyelectrolyte complex particles.  相似文献   

17.
Hydrophobically modified polyelectrolytes were prepared by an aqueous micellar copolymerization technique from acrylamide, N-(4-butyl)phenylacrylamide, and a third monomer, sodium acrylate. The amounts of surfactant and anionic monomers used in the synthesis have great effects on the molecular structures and the association behaviors of the resultant polymers. Rheological properties have been studied as a function of polymer concentration, ionic strength, temperature, shear rate, viscoelasticity, and so on. As expected, the copolymers exhibit improved thickening properties owing to the strong synergistic viscosification effects of the ions and the hydrophobic groups of the polymer molecules. Atomic force microscope studies were used to explore the aggregation morphology and association mechanism of such polymers.  相似文献   

18.
《Supramolecular Science》1997,4(3-4):265-273
Monodisperse spherical polymer particles with anionic and cationic shells were studied for their monolayer formation and compression behaviour on an aqueous subphase as a function of pH and salt (KCl) concentration. In addition, monolayers of monodisperse and bidisperse mixtures of 434 and 214 nm sized anionic particles were studied for their morphology by scanning electron microscopy (SEM). The anionic particles were prepared by soap-free emulsion polymerization of styrene and acrylic acid, and the cationic particles from styrene and 2-acryloxyethyl trimethylammonium chloride. Independent of the chemical nature of the shell, the particles formed monolayers at high salt or acid concentration in the subphase. However, at neutral pH and if no salt was present in the subphase only a part of the spheres formed monolayers, while the residual particles disappeared into the subphase. The origin of this behaviour is discussed in terms of ionization and electrostatic shielding of the polar groups.Compressed monolayers of monodisperse particles consisted of randomly oriented domains of up to 20 particles with small holes in between, the holes not exceeding two particle diameters in size. Films of bidisperse mixtures were highly disordered. If small particles were present in excess, they formed a fairly disordered monolayer and the large particles were situated on top or below this layer. If the number ratio of both sorts of particles approached unity, the texture became disordered and bi- and multilayered aggregates were observed.  相似文献   

19.
The flocculation behavior of anionic and cationic latex dispersions induced by addition of ionic surfactants with different polarities (SDS and cetyltrimethylammonium bromide (CTAB)) have been evaluated by rheological measurements. It was found that in identical polar surfactant systems with particle surfaces of SDS + anionic lattices and CTAB + cationic lattices, a weak and reversible flocculation has been observed in a limited concentration region of surfactant, which was analyzed as a repletion flocculation induced by the volume-restriction effect of the surfactant micelles. On the other hand, in oppositely charged surfactant systems (SDS + cationic lattices and CTAB + anionic lattices), the particles were flocculated strongly in a low surfactant concentration region, which will be based on the charge neutralization and hydrophobic effects from the adsorbed surfactant molecules. After the particles stabilized by the electrostatic repulsion of adsorbed surfactant layers, the system viscosity shows a weak maximum again in a limited concentration region. This weak maximum was influenced by the shear rate and has a complete reversible character, which means that this weak flocculation will be due to the depletion effect from the free micelles after saturated adsorption.  相似文献   

20.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号