首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesized and used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO).In the case of ethylene polymerization,compared the feature structures of unbridged metallocenes, singly bridged metallocenes and doubly bridged metallocenes 1,2,3,there exhibit the relationship ...  相似文献   

2.
Precise,efficient copolymerizations of ethylene with cyclic olefins[norbornene(NBE),cyclopentene(CPE)]using nonbridged half-titanocenes of type,Cp'TiCl_2(L)(Cp'=cyclopentadienyl group,L=aryloxo,ketimide)-MAO catalyst systems have been summarized.CpTiCl_2(N=C'Bu_2)exhibited both remarkable catalytic activity and efficient NBE incorporation for ethylene/NBE copolymerization:the NBE incorporation by Cp'TiCl_2(X)(X=N=C'Bu_2,O-2,6-'Pr_2C_6H_3; Cp'=Cp,C_5Me_5,indenyl)was related to the calculated coordination ...  相似文献   

3.
双烷基钪配合物LSc(CH2SiMe3)2(L=(2,6-iPr2C6H3)NC(Me)CHPPh2N(2,6-Me2C6H3))在助催化剂[Ph3C][B(C6F5)4]的作用下能够高活性地催化乙烯和丙烯共聚.在反应温度30℃和乙烯与丙烯常压(1.0×105Pa)下聚合,共聚活性能够达到7.5×105g(PE)mol-1h-1(105Pa)-1.单体的竞聚率分别为rE=29.75和rP=0.015.13C-NMR和DSC分析表明所得到的乙丙共聚物是弹性体,且丙烯单体无规分布在共聚物链中.  相似文献   

4.
We demonstrate, in this article, the facile synthesis of a broad class of low‐polydispersity ethylene–norbornene (E–NB) copolymers having various controllable comonomer composition distributions, including gradient, alternating, diblock, triblock, and block–gradient, through “living”/quasiliving E–NB copolymerization facilitated with a single Pd – diimine catalyst ( 1 ). This synthesis benefits from two remarkable features of catalyst 1 , its high capability in NB incorporation and high versatility in rendering E–NB “living” copolymerization at various NB feed concentrations ([NB]0) while under an ethylene pressure of 1 atm and at 15 °C. At higher [NB]0 values between 0.42 and 0.64 M, E–NB copolymerization with 1 renders nearly perfect alternating copolymers. At lower [NB]0 values (0.11–0.22 M), gradient copolymers yield due to gradual reduction in NB concentration, with the starting chain end containing primarily alternating segments and the finishing end being hyperbranched polyethylene segments. Through two‐stage or three‐stage “living” copolymerization with sequential NB feeding, diblock or triblock copolymers containing gradient block(s) have been designed. This work thus greatly expands the family of E–NB copolymers. All the copolymers have controllable molecular weight and relatively low polydispersity (with polydispersity index below 1.20). Most notably, some of the gradient and block–gradient copolymers have been found to exhibit the characteristic broad glass transitions as a result of their possession of broad composition distribution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

6.
锗桥连茚及取代茚配体相继与丁基锂及ZrCl4作用,生成锗桥连茚基及取代茚基锆化合物Me2Ge(2-R1-4-R2-Ind)2ZrCl2[R1=R2=H(1);R1=Me,R2=H(2);R1=Me,R2=Ph(3)].化合物1-3均为内消旋和外消旋异构体的混合物,通过多次重结晶得到化合物1和2的纯外消旋异构体及化合物3的内消旋异构体.由元素分析和1H NMR谱表征了化合物的分子结构.研究了在甲基铝氧烷(MAO)的助催化下,化合物1-3对乙烯和丙烯聚合的催化性能.由锗桥连茚基化合物1-3得到的聚乙烯的分子量分布比一般茂金属催化剂略宽.内消旋和外消旋异构体的混合物(3)由于两个催化活性中心不等同而使得到的聚乙烯的分子量分布相当宽.外消旋异构体1和2催化丙烯聚合得到高等规聚丙烯.  相似文献   

7.
The copolymerization of ethylene with 1,5-hexadiene or 1-hexene was studied with the series of ansa-metallocenes Me2Si(Cp)(9-Flu)ZrCl2 (1), Me2Si(1-Ind)(9-Flu)ZrCl2 (3), and Me2Si(9-Flu)2ZrCl2 (4). 1,5-Hexadiene, a monomer which requires two insertion events to be cyclopolymerized, when copolymerized with ethylene using 3/MAO, gave a copolymer with a novel architecture. When compared with the copolymerization of 1-hexene with ethylene, the observed striking differences between the two copolymers provided compelling evidence for a dual-site alternating copolymerization mechanism in both cases. The copolymerization results from 1/MAO and 4/MAO further support this.  相似文献   

8.
DADNiX2 nickel–diimine complexes [DAD = 2,6‐iPr2? C6H3? N?C(Me)? C(Me)?N? 2,6‐iPr2? C6H3] containing nonchelating pseudohalide ligands [X = isothiocyanate (NCS) for complex 1 and isoselenocyanate (NCSe) for complex 2 ] were synthesized, and the propylene polymerization with these complexes and also with the Br ligand (X = Br for complex 3 ) activated by methylaluminoxane (MAO) were investigated (systems 1 , 2 , and 3 /MAO). The polypropylenes obtained with systems 1 , 2 , and 3 were amorphous polymers and had high molecular weights and narrow molecular weight distributions. Catalyst system 1 showed a relatively high activity even at a low Al/Ni ratio and reached the maximum activity at the molar ratio of Al/Ni = 500, unlike system 3 . Increases in the reaction temperature and propylene pressure favored an increase in the catalytic activity. The spectra of polypropylenes looked like those of propylene–ethylene copolymers containing syndiotactic propylene and ethylene sequences. At the same temperature and pressure, system 2 presented the highest number of propylene sequences, and system 3 presented the lowest. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 458–466, 2006  相似文献   

9.
CpTiCl2(N=CtBu2) exhibits both remarkable catalytic activity and efficient norbornene (NBE) incorporation for ethylene-NBE copolymerization: the NBE incorporation by Cp'TiCl2(X) (X = N=CtBu2, O-2,6-iPr2C6H3; Cp' = Cp, C5Me5, indenyl) was related to the calculated coordination energy after ethylene insertion.  相似文献   

10.
Bis(pyrrolide-imine) Ti complexes in conjunction with methylalumoxane (MAO) were found to work as efficient catalysts for the copolymerization of ethylene and norbornene to afford unique copolymers via an addition-type polymerization mechanism. The catalysts exhibited very high norbornene incorporation, superior to that obtained with Me(2)Si(Me(4)Cp)(N-tert-Bu)TiCl(2) (CGC). The sterically open and highly electrophilic nature of the catalysts is probably responsible for the excellent norbornene incorporation. The catalysts displayed a marked tendency to produce alternating copolymers, which have stereoirregular structures despite the C(2) symmetric nature of the catalysts. The norbornene/ethylene molar ratio in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. At norbornene/ethylene ratios larger than ca. 1, the catalysts mediated room-temperature living copolymerization of ethylene and norbornene to form high molecular weight monodisperse copolymers (M(n) > 500,000, M(w)/M(n) < 1.20). (13)C NMR spectroscopic analysis of a copolymer, produced under conditions that gave low molecular weight, demonstrated that the copolymerization is initiated by norbornene insertion and that the catalyst mostly exists as a norbornene-last-inserted species under living conditions. Polymerization behavior coupled with DFT calculations suggested that the highly controlled living polymerization stems from the fact that the catalysts possess high affinity and high incorporation ability for norbornene as well as the characteristics of a living ethylene polymerization though under limited conditions (M(n) 225,000, M(w)/M(n) 1.15, 10-s polymerization, 25 degrees C). With the catalyst, unique block copolymers [i.e., poly(ethylene-co-norbornene)(1)-b-poly(ethylene-co-norbornene)(2), PE-b-poly(ethylene-co-norbornene)] were successfully synthesized from ethylene and norbornene. Transmission electron microscopy (TEM) indicated that the PE-b-poly(ethylene-co-norbornene) possesses high potential as a new material consisting of crystalline and amorphous segments which are chemically linked.  相似文献   

11.
The copolymerization of ethylene and propene was conducted at −40°C with the [ethylene(1-indenyl)(9-fluorenyl)]zirconium dichloride-methylaluminoxane catalyst system, and the microstructure of the resulting copolymers was analyzed in detail by 13C NMR. The content of alternating [EP] sequences increased markedly with an increase in the feed ratio of propene to ethylene. A poly(ethylene-co-propene) with a proportion of [EP] sequences over 95% was thus obtained under appropriate copolymerization conditions. It was also demonstrated that the alternating ethylene-propene copolymer is stereoregular and isotactic.  相似文献   

12.
The copolymerization of ethylene with styrene by Cp*TiCl2(N=CtBu2) (Cp* = C5Me5) took place in a living manner in the presence of methylaluminoxane (MAO) cocatalyst, although the homopolymerization of neither ethylene nor styrene proceeded in a living manner. Both the cyclopentadienyl fragment (Cp') and the anionic donor ligand (X) in Cp'TiCl2(X) directly affect the copolymerization behavior, the catalytic activities, as well as the styrene incorporation; only the above set showed a living copolymerization. No styrene repeating units were observed in the resultant poly(ethylene-co-styrene)s, suggesting that a certain degree of the styrene insertion inhibited the chain transfer in this catalysis.  相似文献   

13.
本文比较了各种氯代钒酸酯-三异丁基铝体系催化丁二烯、丙烯交替共聚的活性,得出氯代钒酸二新戊酯-三异丁基铝体系催化活性最高。能制得高分子量的交替共聚物。研究了该催化体系的特点和聚合规律及提高共聚物[η]的途径。在-76--45℃温度范围内可以制得正[η]为1.7-2.6dl/g的丁丙交替共聚物,单体转化率在80%以上。通过分析鉴定,证明产物交替度在95%左右,反式1,4丁二烯组分含量在95%以上。  相似文献   

14.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
在亚乙基双( 茚基) 二胺化茂铪(rac C2H4(Ind)2Hf(NMe2)2 ,简称1 ,Ind = 茚基,Me= 甲基) 催化作用下,对乙烯(E) 与1 辛烯(O) 无规共聚合进行了研究.作为比较,利用异亚丙基( 环戊二烯基)(1 芴基) 二甲基锆茂催化体系((CH3)2C(Fluo)(Cp)ZrMe2 ,简称2 ,Fluo = 芴基,Cp = 环戊二烯基) 对乙烯/1 辛烯在相同共聚合条件下进行了共聚合.结果表明,在单体浓度比[O]/[E] 较小时共聚合速率随单体浓度比增加而增加,进一步增加单体浓度比则导致共聚合速率降低.催化体系1/Al(iBu)2H/[Ph3C][B(C6F5)4](3) 催化共聚活性比2/ MAO高得多.共聚物中辛烯含量随反应单体1 辛烯含量的增加而增加,两单体竞聚率乘积( rE×ro) 小于1 ,表明聚合物为无规共聚物.相同共聚单体浓度比下1/Al(iBu)2H/3 催化共聚物中辛烯含量比2/ MAO 共聚物中辛烯含量高,表明前者具有更强的共聚合能力.所得无规共聚物熔点温度、结晶度、本体粘度及密度随共聚物中辛烯含量的增加而显著降低.辛烯含量较高时共聚物呈现明显无结晶行为.差示扫描量热分析显示,同乙烯均聚?  相似文献   

16.
A number of half-zirconocene anilide complexes of the type Cp*ZrCl(2)[N(2,6-R(1)(2)C(6)H(3))R(2)] [R(1) = (i)Pr (1, 3), Me (2); R(2) = Me (1, 2), Bn (3)] and Cp*ZrCl[N(2,6-Me(2)C(6)H(3))Me](2) (4) (Cp* = pentamethylcyclopentadienyl) were synthesized from the reactions of Cp*ZrCl(3) with the lithium salts of the corresponding anilide in diethyl ether at room temperature. All new zirconium complexes were characterized by (1)H and (13)C NMR and elemental analysis. Molecular structures of complexes 1, 2 and 4 were determined by single crystal X-ray diffraction analysis. Upon activation with Al(i)Bu(3) and Ph(3)CB(C(6)F(5))(4), complexes 1-4 exhibit good catalytic activity for ethylene polymerization, and produce polyethylene with a moderate molecular weight. Among these zirconium complexes, complex 1 shows the highest catalytic activity while complex 4 shows the lowest catalytic activity for ethylene polymerization. Complexes 1-3 also exhibit moderate catalytic activity for copolymerization of ethylene with 1-hexene, and produce copolymers with relatively high molecular weight and reasonable 1-hexene incorporation. In addition, the activation procedure of these catalyst systems were studied by (1)H NMR spectroscopy.  相似文献   

17.
A new disilyl‐bridged complex, [(Ntert‐butylamido)(3‐indenyl)tetramethyldisilyl]titanium dichloride ( 3 ), was synthesized and activated with methylaluminoxane (MAO) for propylene homopolymerization and ethylene/propylene and ethylene/1‐hexene copolymerizations. A polypropylene with a slight isotactic enrichment was obtained. The number of regioerrors present in the polypropylene was somewhat smaller than that found in most polypropylenes made from monosilyl‐bridged [(Ntert‐butylamido)(3‐indenyl)dimethylsilyl]titanium dichloride. The regioerrors detected in the copolymers obtained from 3 /MAO were on the order of the amounts observed in polymers made with the monosilyl‐bridged constrained geometry catalysts. Ethylene copolymers of propylene and 1‐hexene had random sequence distributions and showed significant comonomer incorporation. Because of the presence of regioerrors, a modified method for determining the monomer composition and sequence distribution was developed from the direct measurement of the monomer content from the number of methylene and methine carbons per polymer chain, regardless of propylene inversion. An estimate of the error in the copolymerization reactivity ratio determination for regioirregular ethylene/α‐olefin copolymers was obtained by the calculation of the reactivity ratios from monomer dyad sequences, with consideration given to the contribution of major regioirregular sequences. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3840–3851, 2005  相似文献   

18.
This work deals with design of maleimide monomer toward more precise control of alternating sequence for radical copolymerization with styrene. Crucial in this study is sequence analysis by MALDI‐TOF‐MS for resultant copolymers that was obtained via ruthenium‐catalyzed living radical copolymerization with a malonate‐based alkyl halide initiator showing selective initiation ability. The copolymers of a simple N‐alkyl maleimide [e.g., N‐ethyl maleimide (EMI)] with styrene gave complicated peak patterns for the MALDI‐TOF‐MS spectra indicating low degree of alternating sequence, in contrary to expectation from the reactivity ratios (almost zero). A simple substitution of methyl group (CH3) of EMI with trifluoromethyl (CF3: CF3‐MI) made the peak patterns much simpler giving the copolymer with higher alternating sequence. More interestingly, the peak interval of the copolymer at earlier polymerization stage was equal to sum of the molecular weights of CF3‐MI and styrene, suggesting possibility of the pair propagation of the monomers. Indeed, 1H NMR analyses of the mixture of maleimide with styrene suggested stronger interaction of CF3‐MI than EMI. Based on the results, maleimide derivatives carrying a substituent‐designable electron‐withdrawing group [ROC(?O)N–: R = substituent] were newly designed toward incorporation of functional side chains. They also gave higher alternating sequence for the copolymerization with styrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 367–375  相似文献   

19.
Cyclohexene (CHE) has been incorporated into the polymer chain in ethylene/CHE copolymerization by nonbridged half-titanocenes containing aryloxo ligands of the type, Cp'TiCl2(O-2,6-iPr2C6H3), in the presence of methylaluminoxane (MAO) cocatalyst. The effect of the substituent in the cyclopentadienyl fragment was found to be very important for CHE incorporation; both the tert-BuCp (3) and 1,2,4-Me3Cp analogues (4) showed efficient CHE incorporation, whereas a negligible amount of CHE incorporation was observed by both the indenyl (1) and the Cp* analogue (2) under the same conditions. Cp-ketimide analogue, CpTiCl2(N=CtBu2) (5), zirconocene-like Cp2ZrCl2 (6), and linked half-titanocene-like [Me2Si(C5Me4)(NtBu)]TiCl2 (7) did not show any CHE incorporation under the same conditions; unique characteristics for using this type of catalyst precursor for the present copolymerization have thus been emphasized.  相似文献   

20.
The polymerization of propylene and ethylene and the copolymerization of these olefins with postmetallocene catalysts [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol] titanium(IV) dichloride and bis{N-(3,5-ditert-butylsalicylidene)-4-[bis(5-methyl-2-furyl)methyl]aniline}titanium( IV) dichloride have been studied. The polymerization of propylene and its copolymerization with ethylene have been carried out in a liquid monomer, while the polymerization of ethylene has been performed in toluene at the constant concentration of the monomer. Polymethylaluminoxane has been used as a cocatalyst. The activity of the catalysts in the polymerization of propylene and ethylene at 50°C is ~ 10 and ~45 kg PP/mol Ti h mol C3H6/l and 178.5 and 2700 kg PE/mol Ti h mol C2H4/l, respectively. It has been established that, in the copolymerization of propylene with ethylene, the active sites of both catalysts selectively polymerize ethylene. The resulting copolymers have a block structure (r 1 r 2= 4.6); as a result, the crystalline phase of polyethylene is formed in them. Polypropylene and propylene-ethylene copolymers are elastomeric materials. Polypropylene samples synthesized with [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol]titanium(IV) dichloride demonstrate a high melting point (150–157°C) in combination with good elastic properties. Polyethylene is a linear polymer with the degree of crystallinity varying from 37 to 45% and a melting point of 133–134°C. The mechanical properties of the polymers and copolymers have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号