首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For labeling purposes, the carbohydrate content of foods has traditionally been determined by difference. This value includes sugars, starches, fiber, dextrins, sugar alcohols, polydextrose, and various other organic compounds. In some cases, the current method may lack sufficient specificity, precision, and accuracy. These are subsequently quantitated by high performance anion exchange chromatography with pulsed amperometric detection and expressed as total nonfiber saccharides or percent "net carbohydrates." In this research, a new method was developed to address this need. The method consists of enzyme digestions to convert starches, dextrins, sugars, and polysaccharides to their respective monosaccharide components. These are subsequently quantified by high-performance anion exchange chromatography with pulsed amperometric detector and expressed as total nonfiber saccharides or percent "net carbohydrates." Hydrolyzed end products of various novel fibers and similar carbohydrates have been evaluated to ensure that they do not register as false positives in the new test method. The data generated using the "net carbohydrate" method were, in many cases, significantly different than the values produced using the traditional methodology. The recoveries obtained in a fortified drink matrix ranged from 94.9 to 105%. The coefficient of variation was 3.3%.  相似文献   

2.
Summary A HPLC system with post-column derivatization for the quantitative analysis of sugars in complex matrices is described. As reagent a 0.2% solution of thymol in concentrated sulfuric acid has been used. The reaction is sensitive with reducing as well as non reducing sugars whereas sugar alcohols are discriminated. With this reagent and separation of sugars at high pH values with an anion exchange column it is possible to detect sugars in the ng range. Hence, it is possible to characterize wines not only by their fructose and glucose content but also by differences in the distribution of the other not fermentable sugars like trehalose, arabinose, galacturonic and glucuronic acid.  相似文献   

3.
An AOAC collaborative study was conducted to evaluate the accuracy and reliability of an enzyme assay kit procedure for measuring oligofructans and fructan polysaccharide (inulins) in mixed materials and food products. The sample is extracted with hot water, and an aliquot is treated with a mixture of sucrase (a specific sucrose-degrading enzyme), alpha-amylase, pullulanase, and maltase to hydrolyze sucrose to glucose and fructose, and starch to glucose. These reducing sugars are then reduced to sugar alcohols by treatment with alkaline borohydride solution. The solution is neutralized, and excess borohydride is removed with dilute acetic acid. The fructan is hydrolyzed to fructose and glucose using a mixture of purified exo- and endo-inulinanases (fructanase mixture). The reducing sugars produced (fructose and glucose) are measured with a spectrophotometer after reaction with para-hydroxybenzoic acid hydrazide. The samples analyzed included pure fructan, chocolate, low-fat spread, milk powder, vitamin tablets, onion powder, Jerusalem artichoke flour, wheat stalks, and a sucrose/cellulose control flour. Repeatability relative standard deviations ranged from 2.3 to 7.3%; reproducibility relative standard deviations ranged from 5.0 to 10.8%.  相似文献   

4.
Analysis of glucose and other simple sugars are often performed by use of normal phase HPLC methods with acetonitrile as major eluent. The present results clearly show that column temperature plays an important role with respect to chromatographic performance and detection limits of glucose when using a specific carbohydrate column. A change in column temperature from 25 to 45 degrees C reduced the detection of glucose (with ELSD) by more than 41%, whereas the detection of other sugar aldoses (galactose, xylose and rhamnose) were suppressed even more. By increase of column temperature to 70 degrees C the detector signal of glucose was found to be less than 2% compared to that obtained at 20 degrees C. Neither fructose nor sucrose showed similar correlation between column temperature and detection. The rate of decreased response is not dependent on sample concentration or the ELSD settings. The results express the importance of accurate temperature control in the analysis of sugar aldoses, and also values low column temperatures for samples with low concentrations of sugar aldoses in order to improve detection.  相似文献   

5.
The precise quantitative analysis of biomass sugars is a very important step in the conversion of biomass feedstocks to fuels and chemicals. However, the most accurate method of biomass sugar analysis is based on the gas chromatography analysis of derivatized sugars either as alditol acetates or trimethylsilanes. The derivatization method is time consuming but the alternative high-performance liquid chromatography (HPLC) method cannot resolve most sugars found in biomass hydrolysates. We have demonstrated for the first time that by careful manipulation of the HPLC mobile phase, biomass monomeric sugars (arabinose, xylose, fructose, glucose, mannose, and galactose) can be analyzed quantitatively and there is excellent baseline resolution of all the sugars. This method was demonstrated for standard sugars, pretreated corn stover liquid and solid fractions. Our method can also be used to analyze dimeric sugars (cellobiose and sucrose).  相似文献   

6.
Ziziphus jujuba pulps are very much appreciated by the inhabitants and have been recently exported. This article reports on the chemical composition (amino acids, polyphenols and sugars) of the pulps of four Z. jujuba ecotypes (Choutrana, Mahdia, Mahres and Sfax). The major amino acids identified were proline, aspartic acid and glutamic acid. Among these, proline was the most abundant amino acid (17.4 mol). Considerable differences in total phenolic contents (15.85 mg/L) were found. Predominant phenols identified by using HPLC were rutin (1.09 mg/L) and chlorogenic acid (2.57 mg/100 g). Sugars isolated from Ziziphus pulps were found at a rate of 43.52%. Using HPLC method, three sugars from the pulp extract were identified: glucose, galactose and sucrose. The Mahdia ecotype was the richest in these sugars with 0.45, 136.51 and 113.28 mg/L, respectively.  相似文献   

7.
A high-temperature capillary gas chromatographic method was developed for the quantitative determination of oligofructose in foods and food products. Sample preparation involves oxymation and silylation of the extracted sugars. The oximetrimethylsilyl derivatives are analyzed on an apolar capillary column, with detection by flame ionization. The method is accurate, with recovery of spiked samples at >96%. Repeatability was excellent; RSD values of 1.1% were obtained. Other common oligosaccharides, such as malto-, isomalto-, and galactooligosaccharides, and levan do not interfere, making the method specific and reliable.  相似文献   

8.
We report amperometric determination of sugars by using a disposable barrel plating nickel electrode (Ni‐BPE) in this study. The activated Ni‐BPE possesses good reproducibility in flow injection analysis of sugars with a relative standard deviation of 3.16% for 10 consecutive injections of glucose. The electrocatalytic mechanism for the detection of sugars as well as the use as a detector in high‐performance liquid chromatography (HPLC) is investigated. We achieve a good separation of four sugars (glucose, fructose, sucrose, and maltose) in HPLC with favorable sensitivity at a detection potential of +0.55 V vs. Ag/AgCl. The results of wide linear calibration ranges and detection limits in the μM range meet the need of real sample analysis. This detection method is successfully used for quantitative determination of sugars in honey to identify its authentication.  相似文献   

9.
Cadet F 《Talanta》1999,48(4):867-875
The advent of more and more powerful micro-computers has allowed the introduction of multidimensional analysis in research laboratories. Complex mathematical treatments are now possible within a few seconds. Prediction equations that linked sucrose, fructose, glucose, total sugars and reducing sugars concentrations to the spectral data, were established by regression on the principal components. Very high correlation coefficient values between the first ten axes and the chemical values were obtained. The bias and standard deviation (S.D.) values obtained between reference and predicted values were good. From such aqueous biological samples containing a ternary mixture of sucrose, fructose and glucose it was possible to (i) identify the characteristic IR bands of these different sugars (and their combination: reducing sugars, total sugars)-using spectral pattern; and (ii) to specifically measure their concentrations with good accuracy.  相似文献   

10.
Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI) with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis), affording cross-linked rice starches with the three different levels of cross-linking that were named R?, R?, and R?, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.  相似文献   

11.
羧甲基木薯淀粉的取代方式研究   总被引:6,自引:0,他引:6  
采用高效液相色谱(HPLC)和核磁共振波谱(^1HNMR)分析了混水/有机介质中合成羧甲基木薯淀粉的取代方式。发现HPLC是一种测定不同条件下合成的羧甲基木薯淀粉取代度(DS)的可靠方法。在测量的范围内,未取代、一取代、二取代和三取代无水葡萄糖单元的摩尔分数分布和Spurlin模型非常吻合。用高分辨率500MHz^1HNMR分析了木薯淀粉羧甲基过程的取代度和反应顺序。依据淀粉和羧甲基淀粉(CMS)的结构确定了各个峰位置。比较所得数据发现:依据HPLC计算的DSHPLC小于从500MHz^1HNMR计算所得的DSNMR。无水葡萄糖单元中C2、C3和C6的羧甲基化反应顺序为C6>C2>C3。  相似文献   

12.
When starch is incorporated into puddings, desserts, and other foods containing sugar as the main ingredient, it will have an effect on the gelatinisation temperature and pasting properties. Many studies have been undertaken to investigate the effect of several sugars in foods and starches, as well as their physicochemical and functional properties. These studies have verified the significant influence on these properties, which are dependent on the nature of sugar and of starch. In this study, pinhão starch was extracted in the laboratory and was added, stirring for 60 min, to solutions at 1 % of each of the following sugars: fructose, glucose, sucrose, and 0.5 % fructose and 0.5 % glucose. After this time, the slurry was filtered, washed, dried at 40 °C and kept in a desiccator over anhydrous calcium chloride until constant mass. The effects of each sugar on the surface of the pinhão starch granules were observed using the non-contact method of atomic force microscopy, whereby it was possible to verify a decrease in the average diameter and an increase in the average roughness. X-ray diffractometry made it possible to evaluate the degree of relative crystallinity, which was proportional to the roughness and inversely proportional to the gelatinisation enthalpy (ΔH), which was studied by differential scanning calorimetry.  相似文献   

13.
丁洪流  李灿  金萍  袁丽红  姚永青  陈英  李培 《色谱》2013,31(8):804-808
建立了食品中常用的木糖、果糖、葡萄糖、蔗糖、麦芽糖、乳糖、蔗果三糖、蔗果四糖、蔗果五糖、赤藓糖醇、木糖醇、甘露糖醇、麦芽糖醇等13种单糖、双糖、低聚果糖和糖醇的高效液相色谱同时分离检测的方法。该法采用NH2色谱柱,以乙腈-水为流动相梯度洗脱,蒸发光散射检测器检测;13种糖在0.1~5 g/L内均具有良好的线性关系,检出限均在0.1 g/L以下,精密度(RSD)为2.69%~7.21%,回收率为96.1%~105.2%,结果较为理想。将该法用于实际样品检测,结果显示食品标签明示和实际成分相差较大。  相似文献   

14.
Dehydration of peppers (Capsicum annuum) is a widely used preservation method. In this study, sun- and hot air-dried red peppers were analyzed for American Spice Trade Association color units, capsaicin, dihydrocapsaicin, organic acids, and free sugars by high-performance liquid chromatography (HPLC), and soluble solids by near-infrared spectroscopy (NIR). In the validation of HPLC protocols, the relative standard deviations were less than 5%, fulfilling the required criteria of Association of Official Analytical Chemists. The concentrations of capsaicin (80.4?mg kg?1), dihydrocapsaicin (38.0?mg kg?1), lactic acid (85.2?mg/100?g), glucose (1.521%), and fructose (3.463%) were slightly higher in sun-dried peppers. Linear discriminant analysis showed that NIR spectroscopy is more useful in discriminating sun- and hot air-dried pepper samples.  相似文献   

15.
The scarcity and expense of access to L ‐sugars and other rare sugars have prevented the exploitation of their biological potential; for example D ‐psicose, only recently available, has been recognized as an important new food. Here we give the definitive and cheap synthesis of 99.4% pure L ‐glucose from D ‐glucose which requires purification of neither intermediates nor final product other than extraction into and removal of solvents; a simple crystallization will raise the purity to >99.8%.  相似文献   

16.
A study was made of the effect of the activity and purity of enzymes in the assay of total dietary fiber (AOAC Method 985.29) and specific dietary fiber components: resistant starch, fructan, and beta-glucan. In the measurement of total dietary fiber content of resistant starch samples, the concentration of alpha-amylase is critical; however, variations in the level of amyloglucosidase have little effect. Contamination of amyloglucosidase preparations with cellulase can result in significant underestimation of dietary fiber values for samples containing beta-glucan. Pure beta-glucan and cellulase purified from Aspergillus niger amyloglucosidase preparations were used to determine acceptable critical levels of contamination. Sucrose, which interferes with the measurement of inulin and fructooligosaccharides in plant materials and food products, must be removed by hydrolysis of the sucrose to glucose and fructose with a specific enzyme (sucrase) followed by borohydride reduction of the free sugars. Unlike invertase, sucrase has no action on low degree of polymerization (DP) fructooligosaccharides, such as kestose or kestotetraose. Fructan is hydrolyzed to fructose and glucose by the combined action of highly purified exo- and endo-inulinases, and these sugars are measured by the p-hydroxybenzoic acid hydrazide reducing sugar method. Specific measurement of beta-glucan in cereal flour and food extracts requires the use of highly purified endo-1,3:1,4 beta-glucanase and A. niger beta-glucosidase. Beta-glucosidase from almonds does not completely hydrolyze mixed linkage beta-glucooligosaccharides from barley or oat beta-glucan. Contamination of these enzymes with starch, maltosaccharide, or sucrose-hydrolyzing enzymes results in production of free glucose from a source other than beta-glucan, and thus an overestimation of beta-glucan content. The glucose oxidase and peroxidase used in the glucose determination reagent must be essentially devoid of catalase and alpha- and beta-glucosidase.  相似文献   

17.
Recent studies have proven ethanol to be the idael liquid fuel for transportation, and renewable ligno cellulosic materials to be the attractive feed stocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from starches and cane sugar cannot metabolize xylose. Our group at Purdue University succeded in developing genetically engineered Saccharomyces yeasts capable of effectively cofermenting glucose and xylose to ethanol, which was accomplished by cloning three xylose-metabolizing genes into the yeast. In this study, we demonstrated that our stable recombinant Sacharomyces yeast, 424A (LNH-ST), which contains the cloned xylose-metabolizing genes stably integrated into the yeast chromosome in high copy numbers, can efficiently ferment glucose and xylose present in hydrolysates from different cellulosic biomass to ethanol.  相似文献   

18.
The analytical capabilities of HPLC with an amperometric detector for the determination of anthropogenic and natural pollutants and special additives in food products and beverages are surveyed. It was demonstrated that HPLC with an amperometric detector opens up new possibilities for the determination of sugars, natural phenolic compounds, biogenic amines, amino acids, mycotoxins, ions, vitamins, etc., in food products of complex composition.  相似文献   

19.
Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.  相似文献   

20.
Summary: Thermoplastic starches (TPS) based on cassava starch have been produced by extrusion at 120 °C, using glycerol as plasticizer. Three forms of cassava starch were employed, viz: cassava root (CR), cassava bagasse (CB) and purified cassava starch (PCS). The main differences between these are the presence of sugars and a few fibres in CR and high fibre concentration in CB. Conditions of processing and characteristics such as amylose and fibre content, crystallinity, water absorption and mechanical behaviour in the tension x deformation test were evaluated. The results demonstrated that the PCS and CR had amylose contents consistent with literature values (14–18%) and that CB is a material constituted mainly by amylopectin. It was found that fibres in high proportions (as in the bagasse) can confer reinforcement properties and are thus able to generate natural composites of TPS with cellulose fibre. The sugars naturally found in the root reduce the elongation of the TPS under tension. The PCS and CR TPS were stable with respect to indices of crystallinity after processing; and during a period of 90 d in a relative humidity of 53%, while the CB TPS tended to vary its crystallinity, probably because its amylose chain had low degree of polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号