首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
X. -C. Guo  R. J. Madix   《Surface science》2004,550(1-3):81-92
The adsorption of oxygen and carbon dioxide on cesium-reconstructed Ag(1 1 0) surface has been studied with scanning tunneling microscopy (STM) and temperature programmed desorption (TPD). At 0.1 ML Cs coverage the whole surface exhibits a mixture of (1 × 2) and (1 × 3) reconstructed structures, indicating that Cs atoms exert a cooperative effect on the surface structures. Real-time STM observation shows that silver atoms on the Cs-covered surface are highly mobile on the nanometer scale at 300 K. The Cs-reconstructed Ag(1 1 0) surface alters the structure formed by dissociative adsorption of oxygen from p(2 × 1) or c(6 × 2) to a p(3 × 5) structure which incorporates 1/3 ML Ag atoms, resulting in the formation of nanometer-sized (10–20 nm) islands. The Cs-induced reconstruction facilitates the adsorption of CO2, which does not adsorb on unreconstructed, clean Ag(1 1 0). CO2 adsorption leads to the formation of locally ordered (2 × 1) structures and linear (2 × 2) structures distributed inhomogeneously on the surface. Adsorbed CO2 desorbs from the Cs-covered surface without accompanied O2 desorption, ruling out carbonate as an intermediate. As a possible alternative, an oxalate-type surface complex [OOC–COO] is suggested, supported by the occurrence of extensive isotope exchange between oxygen atoms among CO2(a). Direct interaction between CO2 and Cs may become significant at higher Cs coverage (>0.3 ML).  相似文献   

2.
The growth of PbI2 precipitates on single crystal substrates from colloidal solutions has been investigated with in air scanning tunneling microscopy and synchrotron-based X-ray photoelectron spectroscopy. The PbI2 growth on Rh(1 0 0) results in nano-clusters with lateral dimensions between 30 and 60 Å, consistent with earlier reports. However, the growth of PbI2 on a well-ordered iodinated Rh(1 0 0), denoted as (√2×√2)R45°-I, leads to atomically smooth PbI2 films having a hexagonal symmetry with lattice constant identical to the bulk value of 4.5 Å. The heteroepitaxy is believed to be effected by the atomic iodine monolayer that helps to accommodate large lattice mismatch between PbI2 and Rh surface with short-range van der Waals interaction.  相似文献   

3.
Adsorption and thermally-induced dissociation of disilane (Si2H6) on clean Ge(001)2 × 1 surfaces have been investigated using a combination of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS), reflection high-energy electron diffraction (RHEED), and scanning tunneling microscopy (STM). With initial Si2H6 exposure at room temperature, the Si surface coverage increased monotonically, the EELS surface dangling bond peak intensities continuously decreased, and the intensity of half-order RHEED diffraction rods decreased. The low-coverage Si2H6 sticking probability at 300 K on Ge(001) was found to be 0.5 while the saturation coverage was 0.5 ML. A new EELS feature, GSH, involving Si-H and Ge-H bond states was observed at Si2H6 exposures φ 3.4 × 1013 cm−2. In contrast to Si2H6 -saturated Si(001), the saturated Ge(001) surface significant fraction of dimerized bonds. Adsorbed overlayers were highly disordered with the primary species on saturated surfaces being SiH2, GeH, and undissociated SiH3· Si2H6-saturated Ge(001)2 × 1 substrates were annealed for l min at temperatures Ta between 425 and 825 K. Admolecules were mobile at Ta = 545 K giving rise to significant ordering in one-dimensional chains. By Ta = 605 K, essentially all of the admolecules were captured into coarsened islands. Dangling-bond EELS peaks reappeared by 625 K and the intensities of the half-order RHEED diffraction rods increased. Ge segregation to the surface, which began at Ta 625 K, occurred rapidly at Ta 675 K. All H was desorbed by 725 K.  相似文献   

4.
The adsorption of CO2 on the NaCl(100) surface was studied with a high-resolution LEED-system. Measurements without charging up at low electron energies and without damage by the e-beam could be performed by using ultrathin epitaxial films on a conducting Ge(100) substrate. The adsorption behavior was recorded as a function of time and pressure at constant substrate temperatures of 78 and 83 K and CO2 partial pressures from 4 × 10−8−2 × 10−3 Pa. The adsorption system shows a first-order two-dimensional phase transition to a (2 × 1) superstructure including glide planes (herringbone-like structure) at p = 7.2 × 10−8Pa (T = 78 K). The condensation of the CO2 solid is starting at p = 1.5 × 10−4 Pa (T = 78 K). The LEED-pattern shows in this c(2 × 2) superstructure, which corresponds to the pyrite-like structure of the CO2 solid. Both observed superstructures are commensurable with the NaCl(100) surface. Observation of island growth shows that the domains of the (2 × 1) superstructures have already at coverage of 5% of a monolayer an average lateral size of at least 200 A.  相似文献   

5.
Scanning tunneling microscopy experiments on a clean, reduced SnO2(1 0 0)-(1 × 1) surface reveal surface defects with zero-, one-, and two-dimensions. Point defects consist of missing SnO/SnO2 units. Line defects are probably crystallographic shear planes that extend to the surface and manifest themselves as rows of atoms, shifted half a unit cell along the [0 1 0] direction. Their ends act as preferential nucleation sites for the formation of Pd clusters upon vapor deposition. Areas of a more reduced surface phase, still with a (1 × 1) structure and a half-unit cell deep, form at [0 0 1]-oriented step edges.  相似文献   

6.
The interactions at the evolving RuO2/titanium interface have been studied by LEED, AES and XPS. Titanium films of up to 5 monolayers were evaporated onto well ordered and ion sputtered ruthenium dioxide crystal surfaces of (110) and (100) orientation. Stabilization of the surface oxygen content under thermal treatment in UHV (up to 600°C) with increasing titanium coverage was established. After extended (up to 4 h) annealing in O2 at 600°C an epitaxial ordering of TiO2 on RuO2(110) was observed. The (1 × 1) LEED patterns from the epitaxial layer exhibit a reduced background level when compared to the RuO2 substrate itself. These findings are correlated with the XPS data and are interpreted in connection with the disappearance of the defect RuO2 phase in the surface layer of the RuO2. The appearance of the (1 × 2) surface reconstruction at the RuO2(100)/Ti interface is discussed in the context of maximum cation coordination by oxygen atoms.  相似文献   

7.
The heteroepitaxy in DyMnO3/Er1Ba2Cu3O7-δ bilayer thin films on LaAlO3 (100) substates was characterized by four-circle X-ray diffractometry. The Er1Ba2Cu3O7-δ thin films on LaAlO3 (100) substrates were prepared by molecular-beam deposition (MBD) and post-growth annealing in wet and dry O2 at 880°C, whereas the DyMnO3 thin films on the Er1Ba2Cu3O7-δ/LaAlO3 (100) heterostructure were deposited by MBD and post-growth annealing in dry O2 at 750°C. The conventional X-ray diffraction (XRD) patterns as well as pole figures (φ-scans) for specific (hkl) reflections were acquired. The Er1Ba2Cu3O7-δ thin film in the DyMnO3/Er1Ba2Cu3O7-δ/LaAlO3 (100) heterostructure showed [001] oriented epitaxial growth, as expected. The DyMnO3 thin film on the Er1Ba2Cu3O7-δ epilayer in the heterostructure grew with (110) epitaxy in its metastable orthorhombic phase (lattice constants: ao=5.272 Å, bo=5.795 Å and co=7.38 Å). The heteroepitaxial relationships at the orthorhombic-DyMnO O3 (110) /Er1Ba2Cu3O7-δ (001) interface was determined as the following: DyMnO3 (110) Er1Ba2Cu3O7-δ (001), DyMnO3 [1 0] ¶r; Er1Ba2Cu3O7-δ[100] or Er1Ba2Cu3O7-δ[010], and DyMnO3 [001] ¶r; Er1Ba2Cu3O 7-δ[010] or Er1Ba2Cu3O7-δ [100].  相似文献   

8.
The coadsorption of CO and ammonia on Ru(001) has been investigated by low-energy electron diffraction (LEED), temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). The main focus has been on the interaction between different admolecules on the surface and its important role in surface reaction. Exposing CO-precovered Ru(001) to ammonia at 100 K leads to the formation of mixed ordered layers with a (2 × 2) periodicity. It was found that two types of (2 × 2) structures are formed depending on the CO precoverage. One of the (2 × 2) structures (-phase) contains one CO and two ammonia molecules per (2 × 2) unit cell and the other (β-phase) contains two CO and one ammonia. Structure models for the two phases are proposed based on vibrational spectra measured for the coadsorbed phases of CO and ammonia (15NH3 or ND3). TPD results suggest that the ammonia dissociation takes place on clean and CO-precovered Ru(001). The amount of dissociated ammonia decreased initially with increasing CO precoverage, passed a minimum at θCO = 0.25, increased with a further increase of CO coverage, and eventually reached a saturation value above θCO = 0.5. The dissociation of ammonia in the β−(2 × 2) structure was found to be enhanced by a factor of 4–6 as compared with the dissociation in the −(2 × 2) structure. The HREEL spectra indicated that the C3v molecular axis of ammonia is tilted in the coadsorbed layers, the tilting being most pronounced in the β−(2 × 2) phase with a high CO partial coverage. This observation suggests that the tilting of ammonia due to the interaction with CO facilitates electron donation from Ru 4d to LUMO of ammonia, leading to the N-H bond dissociation. The microscopic model for the CO-NH3 interaction on metal surfaces is presented.  相似文献   

9.
Diffusion length of Ga on the GaAs(0 0 1)-(2×4)β2 is investigated by a newly developed Monte Carlo-based computational method. The new computational method incorporates chemical potential of Ga in the vapor phase and Ga migration potential on the reconstructed surface obtained by ab initio calculations; therefore we can investigate the adsorption, diffusion and desorption kinetics of adsorbate atoms on the surface. The calculated results imply that Ga diffusion length before desorption decreases exponentially with temperature because Ga surface lifetime decreases exponentially. Furthermore, Ga diffusion length L along and [1 1 0] on the GaAs(0 0 1)-(2×4)β2 are estimated to be and L[110]200 nm, respectively, at the incorporation–desorption transition temperature (T860 K).  相似文献   

10.
Scanning tunnelling microscopy has been used to identify a number of surface reconstructions on the (001) surface of the cubic metallic sodium tungsten bronze, Na0.667WO3. Which is dominant has been found to depend critically on sample preparation. As well as a reconstruction that bears a striking similarity to that of the parent material, tungsten trioxide, regions of (2×1) periodicity are observed that can only be explained in terms of an NayO surface layer. In the current work, we relate the effect of sample preparation on the surface electronic structure of Na0.667WO3(001) with that on the atomic structure by comparing photoemission spectra with STM images. Particular interest is focused on band gap defect states in photoemission spectra which, in contrast to similar states in spectra from WO3, do not appear to correlate with the appearance of localised defects or highly reduced terraces in STM images. The existence of peroxide-like oxygen dimers at the (2×2) reconstructed surface, on the other hand, is characterised by the appearance of identifiable states in the valence band spectrum.  相似文献   

11.
Well-defined (101) and (001) surfaces of anatase TiO2 were studied for the first time by secondary-electron imaging and low-energy electron diffraction. Initially, both surfaces show a crystalline structure corresponding to the bulk anatase phase, buried under an atomically thin contamination layer. After mild sputtering with 500 eV Ne+ ions, we have observed a surface phase transition from tetragonal anatase to face-centered cubic titanium monoxide TiO. Subsequent annealing at 900 K restores the (1×1) anatase structure at the (101) surface. On the (001) surface, however, a (1×4) reconstruction appears. The unreconstructed structure can be recovered by exposing the surface to oxygen. These observations demonstrate the stability of the anatase surfaces and illustrate the feasibility of preparing and investigating clean surfaces of this technological important form of TiO2.  相似文献   

12.
Smooth, epitaxial cerium dioxide thin films have been grown in-situ in the 450–650°C temperature range on (001) yttria-stabilized zirconia (YSZ) substrates by metal–organic chemical vapor deposition (MOCVD) using a new fluorine-free liquid Ce precursor. As assessed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution electron microscopy (HREM), the epitaxial films exhibit a columnar microstructure with atomically abrupt film-substrate interfaces and with only minor bending of the crystal plane parallel to the substrate surface near the interface and at the column boundaries. With fixed precursor temperature and gas flow rate, the CeO2 growth rate decreases from 10 Å/min at 450°C to 6.5 Å/min at 540°C. The root-mean-square roughness of the films also decreases from 15.5 Å at 450°C to 4.3 Å at 540°C. High-quality, epitaxial YBa2C3O7−x films have been successfully deposited on these MOCVD-derived CeO2 films grown at temperatures as low as 540°C. They exhibit Tc=86.5 K and Jc=1.08×106 A/cm2 at 77.4 K.  相似文献   

13.
Electrochemical deposition of Rh ions on a (5 × 20) Pt(100) surface gave a (1 × 1) LEED pattern with high background intensity. By exposing the (1 × 1) Rh/Pt(100) surface to O2 or NO, a characteristic p(3 × 1) Rh---O overlayer is built up at about 400 K, which is the same structure observed on the Pt0.25Rh0.75(100) surface exposed to NO or O2. Once the p(3 × 1) Rh---O overlayer is formed, a reversible structural change, ,p(3 × 1) (1 × 1), can be caused at room temperature by adding H2 and O2. The p(3 × 1) Rh---O overlayer on the Pt(100) surface may represent a highly efficient catalyst for NOx reduction.  相似文献   

14.
K-band electron spin resonance (ESR) at 4.3 K has revealed the dipole-dipole (DD) interaction effects between [1 1 1]Pb centers (*Si ≡ Si3 defects with unpaired sp3 hybrid [1 1 1]) at the 2 dimensional (1 1 1)Si/SiO2 interface. This has been enabled by the perfectly reversible H2 passivation of Pb, which affects the defect's spin state. Sequential hydrogenation at 253–353°C and degassing treatments in high vacuum at 743–835°C allowed to vary the Pb density in the range 5 × 1010 < [Pb] (1.14 ± 0.06) × 1013 cm-2. With increasing [Pb] fine structure doublets are clearly resolved. It is found that (1 1 1)Si/SiO2 interfaces, dry thermally grown at ≈920°C, naturally comprise a *Si ≡ Si3 defect density — passivated or not — of 1.14 × 1013 cm-2.  相似文献   

15.
I. D. Cocks  Q. Guo  E. M. Williams   《Surface science》1997,390(1-3):119-125
The TiO2(110)-(1 × 1) surface and its reconstruction as a (1 × 2) form have been studied with low energy electron diffraction (LEED), electron stimulated desorption ion angular distribution (ESDIAD) and scanning tunnelling microscopy (STM). Oxygen ion desorption occurs within a lobe perpendicular to the (1 × 1) surface, changing to two off-normal lobes for the (1 × 2) reconstruction. This transformation in the ESDIAD pattern is consistent with the added Ti2O3 row model of the (1 × 2) reconstruction proposed by Onishi and Iwasawa. STM studies of the stoichiometric and electron irradiated surfaces reinforce the association of the O+ ESD contribution with majority sites at the surface. Adsorption of acetic acid on the (1 × 1) surface produces a (2 × 1) overlayed and induces a reconstruction of the underlying substrate. ESDIAD reveals H+ ions emitted off-normally from dissociatively adsorbed acetate, and along the surface normal from surface hydroxyls. Adsorption of acetic acid on the (1 × 2) surface does not modify the LEED pattern, but ESDIAD reveals H+ desorption with a weaker off-normal contribution consistent with the Ti2O3 model of the reconstruction.  相似文献   

16.
Oxide catalysts are frequently used to convert toxic species to environmentally benign molecules, and to prevent the formation of toxic species in the first place. In this paper, growth and characterization of model oxide systems employed in both approaches is discussed. An example of the former approach is the selective catalytic reduction (SCR) of NO emitted from power plants by NH3, which employs tungsten and vanadium oxides supported on the anatase polymorph of TiO2. To model SCR catalysts, epitaxial titanium, vanadium and tungsten oxide films were grown using molecular beam epitaxy and magnetron sputtering. Two different anatase orientations were grown on LaAlO3 substrates and their interactions with vanadia were characterized. On LaAlO3 (0 0 1), anatase exposed a (4 × 1) reconstructed (0 0 1) surface. Vanadia lifted the reconstruction and at 1 ML a (1 × 1) surface with mostly V5+ was observed. Continued V2O5 growth led to loss of order, but at high temperatures epitaxial VO2 could be grown; vanadia behaved similarly on anatase films on LaAlO3 (1 1 0). Results suggested that the monolayer is pseudomorphic with O adsorption oxidizing the surface V to 5+, since the anatase structure cannot accommodate more bulk oxygen, only a monolayer can be pseudomorphic and have only V5+. Thus the vanadia monolayer has unique structural and chemical properties that can help explain why vanadia monolayers on TiO2 are much more active than bulk V2O5. For WO3, a series of added row reconstructions were observed as the epitaxial films were reduced. The effect of these structures on surface chemistry was characterized by studying 1-propanol adsorption. The results indicated that the structure of the WO3 surface did not alter its catalytic function but had a strong effect on reaction kinetics. As an example of a system where catalysts prevent the formation of toxic species, the reactivity of oxidized Pd surfaces used in CH4 catalytic combustion were studied. An ordered PdO-like monolayer was found to be less reactive towards CO than adsorbed O on Pd. On the other hand, the PdO layer favored a lower activation energy C3H6 oxidation pathway. The results indicated that Pd oxidation reduces the sticking coefficient of reactive species but once molecules adsorb, the oxide surface can reduce the activation energy for subsequent reaction.  相似文献   

17.
18.
Filled and empty state scanning tunnelling microscopy images of the sputtered and annealed InSb(001) surface are presented. The sputter-anneal preparation generates a surface with two distinct phases. The dominant phase possesses a unit cell with true c(8 × 2) symmetry, whereas the other phase is attributed to an asymmetric 1 × 3 reconstruction. The presence of a c(8 × 2) unit cell in filled state images is in contrast to previous reports, which identified only a 4 × 1 unit cell. The true c(8 × 2) symmetry further indicates, the available structural model is used as a guide, that the current interpretation of features in filled state images is incorrect. This result may necessitate a reevaluation of the structural model for the InSb(001)-c(8 × 2) surface.  相似文献   

19.
We report on the photoluminescence spectra of thin films of chain-like π-conjugated molecules on well-defined surfaces of wide gap inorganic materials. The aim is to study the energy transfer processes across the organic/substrate interface which limit the luminescence of molecules in close contact to substrate surfaces. We discuss quaterthiophene (4 T) adsorbed on the c(2×2)-ZnSe(0 0 1) surface and tetracene (Tc) on the surface of a thin epitaxial Al2O3 film on Ni3Al(1 1 1). For thin films vapor-deposited at low substrate temperatures, we observe no luminescence signal for both systems, which indicates the presence of fast luminescence quenching processes at the organic/inorganic interface. After annealing, luminescence spectra corresponding to those of the bulk crystals are obtained. This can be explained by the formation of 3D-crystallites, which effectively separate most molecules from the organic/inorganic interface.  相似文献   

20.
As a stable and ‘epitaxial’ passivation of a Si surface, we propose the bilayer-GaSe termination of a Si(1 1 1) surface. This surface is fabricated by depositing one monolayer of Ga on a clean Si(1 1 1) surface and subsequent annealing in a Se flux at around 520 °C, which results in unreconstructed 1×1 termination of the Si(1 1 1) surface by bilayer-GaSe. We found by scanning tunneling microscopy observation that slow cooling of the clean Si(1 1 1) surface from 850 to 520 °C with simultaneous deposition of a Ga flux results in better termination of the Si(1 1 1) surface. It was also found that this surface is stable against heating around 400 °C in O2 atmosphere of 3×10−3 Pa. By utilizing these properties of the bilayer-GaSe terminated surface, we have succeeded in fabricating ZnO quantum dots on this substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号