首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis of Zn‐doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2O2. The catalyst was characterized by transmission electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller, UV–visible reflectance spectra and X‐ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn‐doped TiO2. Zn‐doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2O2 modification further enhanced the photocatalytic activity. Zn doping and H2O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn‐doped TiO2 and H2O2 modified Zn‐doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2O2 modified Zn‐doped TiO2, favoring the adsorption of visible light. Furthermore, Zn‐doped TiO2 modified by H2O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.  相似文献   

2.
In the present study, Nd3+-doped ZnSe nanoparticles with variable Nd contents were successfully synthesized via a hydrothermal process using Neodymium (III) chloride hexahydrate as the doping source. X-ray diffraction, UV–Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy and transmission electron microscopy were used for characterization of the synthesized nanoparticles. It was confirmed by the DRS analysis that both of the undoped and Nd-doped ZnSe samples had significant optical absorption in the visible light range. The photocatalytic performance of as-synthesized nanoparticles was investigated towards the decolorization of C. I. Acid Orange 7 solution under visible light irradiation. Results indicated that the loading of Nd dopant into ZnSe nanoparticles significantly enhanced the photocatalytic activity of pure ZnSe with increasing Nd loading up to 6 mol% (color removal efficiency of 24.31 % for ZnSe and 84.20 % for Nd0.06Zn0.94Se after 120 min of treatment) and then the photocatalytic activity began to decrease.  相似文献   

3.
On the System Ba2Sm 0.67U1?xWxO6 The ordered perovskites Ba2Sm0.67UO6 and Ba2Sm0.67 WO6 are forming a complete serie of solid solutions with 4 formula units Ba2Sm0.67U1?xWxO6 in the unit cell. By diffuse reflectance and i.r.-spectroscopic measurements the relations between color and constitution are shown.  相似文献   

4.
Neodymium doped Barium Zirconate Titanate (Ba1−xNd2x/3)(Zr0.3Ti0.7)O3 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were prepared using the solid state reaction route. Structural characterizations of the materials were done by using X-ray diffraction and Raman spectroscopy. XRD study suggested that all the compositions were of single phase cubic perovskite structure with space group Pm-3m while Raman spectra revealed that the replacement of the Ba2+ ions by Nd3+ ions significantly reduced the intensity of the Raman active modes and shifted them towards higher energy side. Room temperature optical property was analyzed by photoluminescence spectroscopy, which confirmed formation of shallow defects in the band gap. Photoluminescence property was attributed to the presence of polar [TiO6] distorted clusters in the globally cubic matrix. As a result PL emission spectra of these materials were found to belong to violet–blue regions. Microstructural study of sintered pellets revealed that the grain sizes increase with increase in doping concentration. The temperature dependence of the dielectric properties was investigated in the frequency range 1 kHz to 1 MHz. The broadening in the dielectric constant peak around the phase transition temperature and shifting of the temperature maximum towards higher temperatures with increase in frequency indicated a relaxor type of behavior.  相似文献   

5.
利用简单的方法合成了Zn掺杂砖块状WO3材料,并用罗丹明B对其光催化性能进行了评估。利用X射线衍射、拉曼光谱、扫描电镜、紫外可见漫反射光谱、红外光谱和X射线光电子能谱分析等技术对合成材料进行了表征,结果表明适量Zn掺杂可保持WO3的砖块状形貌。光催化结果表明Zn掺杂量(质量分数)为5%的WO3光催化性能最好,这是因为该材料内形成了大量的氧空位且羟基含量较高。  相似文献   

6.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

7.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

8.
Magnetically recoverable Fe3O4/BiOCl nanocomposite photocatalysts were fabricated by a simple chemical coprecipitation method at room temperature. The amount of Fe3O4 incorporated into BiOCl was varied from 0 to 20 wt%. The as-synthesized samples were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, UV–Vis diffuse reflectance spectroscopy, and vibrating sample magnetometer. The obtained results show that the as-synthesized samples mainly contain both crystalline phases (Fe3O4 and BiOCl) and are composed of flower-like nanostructures. Compared to UV light-responsive BiOCl, all the nanocomposite photocatalysts show a strong light absorbance in the range of 250–800 nm, demonstrating that the Fe3O4/BiOCl nanocomposites can respond to visible as well as UV light. Moreover, visible light absorbance was increased with the increase in the Fe3O4 amount in the composite. The photocatalytic activity of nanocomposite photocatalysts was evaluated by the photodegradation of Rhodamine B (RhB) over the samples under visible light irradiation. The 10 wt% Fe3O4/BiOCl nanocomposite photocatalyst shows the highest photocatalytic efficiency among the samples. The Fe3O4/BiOCl nanocomposite photocatalyst was stable under visible light irradiation to efficiently degrade RhB molecules after five cycles and could be easily recovered with a magnet after each cycle.  相似文献   

9.
The Cr ion doping effect on various properties of Cr doped BaCrxFe12-xO19 nanoparticles was investigated, which were synthesized via a facile microemulsion approach and properties were studied using XRD, SEM, FTIR, Raman, photoluminescence and UV–visible techniques along with dielectric, optical and ferroelectric properties. The BaCrxFe12-xO19 structure was hexagonal involving P63/mmc space group with average crystalline size of 9–18 nm. The NPs exhibited agglomerated platelet heterogeneous morphology. The presence of the Ba-O-Fe functional group was also confirmed by FTIR analysis. The PL analysis revealed that the doping reduced the recombination rate and charge (e?-h+) separation is facilitated. The coercivity (Hc) and saturation polarization (Ps) increased with doping content and dielectric loss reduces with frequency and dopant concentration. The dopant contents also increased the AC conductivity and the optical bandgap found in 1.75–2.83 (eV) range. The BaCrxFe12-xO19 exhibited a significantly higher photocatalytic efficiency versus BaFe12O19, and 91 % CV dye was degraded in 90 min under visible light irradiation. Additionally, a recycling experiment was conducted to confirm the stability of the prepared photocatalyst and Cr doped BaCrxFe12-xO19 exhibited excellent stability and reusability. The Cr doping affected the dielectric, optical and ferroelectric properties and based on photocatalytic properties of BaCrxFe12-xO19, it has potential applications for the destruction of dyes in wastewater under visible light exposure, which will make the process highly feasible for photocatalytic applications.  相似文献   

10.
The catalytic activity of supported chromites MCr2O4/-Al2O3 (M = Cu, Co, Mn, Zn, Mg) in the oxidation of CO, C3H6, and o-xylene and NOx reduction was studied. The catalytic activity depends on the calcination temperature and cation nature. The features of the formation of the catalysts were studied by the UV-Vis diffuse reflectance and IR spectroscopies.  相似文献   

11.
Fe-doped TiO2, Ti1–xFexO2 (x = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10), photocatalysts have been successfully synthesized via citric acid–assisted autocombustion method. The synthesized photocatalysts were characterized using different characterization techniques, such as X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX), and x-ray photoelectron spectroscopy (XPS). The XRD diffraction patterns revealed that synthesized photocatalysts have the anatase phase of TiO2. The DRS analysis indicates a slight increment in absorbance in the visible light region by the Fe doping in TiO2. The FT-IR spectra reveal the various stretching and bending vibrational bands of the Ti–O lattice. The XPS spectra confirm the presence of elements titanium, oxygen, and iron in the synthesized samples and determine binding energy of elements. TEM analysis shows the shape of the synthesized photocatalyst, and it was used to calculate the average particle sizes of undoped and Fe-doped TiO2 (Ti0.96Fe0.04O2) photocatalysts using a histogram. The photocatalytic activities of synthesized photocatalysts were determined by photodegradation of dye (Direct Blue 199), contaminating carpet industry wastewater in the photochemical reactor and open pan reactor. The maximum photodegradation activity was shown by the Ti0.96Fe0.04O2 photocatalyst among all the synthesized undoped and Fe-doped photocatalysts. The synthesized photocatalyst (Ti0.96Fe0.04O2) had better photocatalytic activity when compared to both, undoped TiO2 and Aeroxide (Degussa) P-25. The used Fe-doped TiO2 photocatalyst (Ti0.96Fe0.04O2) was regenerated five times and investigated for its photocatalytic activity.  相似文献   

12.
We investigated the influence of B substitution for Al2W3O12 on thermal changes of UV–Vis and Raman spectra, and colors. First, B-substituted Al2W3O12 powder was synthesized by a solid-state reaction method. Single-phase Al2?xBxW3O12 powders with x = 0, 0.10 and 0.20 were successively prepared. B substitution promoted thermal changes of the UV–Vis spectra, resulting in a more pronounced color change of Al2W3O12 in the range of 30–150 °C. Raman spectra of the Al2?xBxW3O12 powders with x = 0 and 0.20 indicated that the lattice vibrations of Al2?xBxW3O12 with x = 0.20 were larger than those of Al2W3O12. The thermal change of the color phase (ΔE) in the range 30–150 °C of Al2W3O12 was increased by B substitution. The color of the B-substituted Al2W3O12 powders changed reversibly from pale white at 30 °C to light yellowish green at 150 °C.  相似文献   

13.
The catalytic properties of supported cobaltites MCo2O4 (M=Cu, Mn, Zn, Mg) in the oxidation of CO, C3H6, and ethylbenzene and reduction of nitrogen oxides were investigated. The catalytic activity depends on the calcination temperature and the nature of the cation. The regularities of formation and the state of the surface of the catalysts were studied by IR spectra and diffuse reflectance spectra in the UV and visible regions. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1547–1550, September, 2000.  相似文献   

14.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

15.
Vacancy‐rich layered materials with good electron‐transfer property are of great interest. Herein, a full‐spectrum responsive vacancy‐rich monolayer BiO2?x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2?x is responsible for the enhanced photon response and photo‐absorption, which were confirmed by UV/Vis‐NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2?x, monolayer BiO2?x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near‐infrared light (NIR) irradiation, which can be attributed to the vacancy VBi‐O′′′ as confirmed by the positron annihilation spectra. The presence of VBi‐O′′′ defects in monolayer BiO2?x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.  相似文献   

16.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

17.
Vacancy‐rich layered materials with good electron‐transfer property are of great interest. Herein, a full‐spectrum responsive vacancy‐rich monolayer BiO2−x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2−x is responsible for the enhanced photon response and photo‐absorption, which were confirmed by UV/Vis‐NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2−x, monolayer BiO2−x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near‐infrared light (NIR) irradiation, which can be attributed to the vacancy VBi‐O′′′ as confirmed by the positron annihilation spectra. The presence of VBi‐O′′′ defects in monolayer BiO2−x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.  相似文献   

18.
The alkali metal sesquioxides A4O6 (A=K, Rb, Cs) are mixed-valent with respect to oxygen and display several degrees of electronic and structural freedom, which give rise to diverse transport and ordering processes. We report on analyses of the respective underlying excitations by diffuse reflectance spectroscopy and thermally activated electron transport. Backed by DFT based band structure calculations we identify three possible mechanisms, inter valence charge transfer from peroxide to superoxide, excitation across the Jahn-Teller gap of tilted superoxide anions, and polaron migration. The activation energies as found by the three different approaches are in a rather narrow range of 0.62–0.89 eV for Rb4O6 and 0.49–0.65 eV for Cs4O6, confirming opacity in the full range of visible light. The effect of the phase transition from cubic to tetragonal as demonstrated for the caesium representative corresponds to a marginal shift to higher activation energy.  相似文献   

19.
Decomposition of isopropanol (IPA) on V2O5, Li0.02V2O5, Na0.02V2O5, Na0.06V2O5, Li0.33V2O5, and Na0.33V2O5 has been studied in the temperature range 186–300°C. The first four catalysts (α-phase) show predominately dehydration, whereas the last two (β-phase) have comparable dehydration and dehydrogenation activity. Dehydration activity increases with alkali metal concentration within the α-phase, but falls sharply on the β-phase catalysts. This difference is attributed to the different rate determining steps for the reaction on the α- and β-phase catalysts. X-ray and ir spectral data show that the β-phase catalysts are much more stable than the α-phase. A mechanism for the dehydration of IPA based on the electrical resistivity, ESR spectra, and kinetic data has been proposed.  相似文献   

20.
The effect of WO3 on thermal behaviour and thermal stability of ZnO–P2O5–WO3 glasses prepared in compositional series (100 ? x)[0.5ZnO–0.5P2O5] ? xWO3 (x = 0–60) was investigated by heating microscopy and the results were correlated with the results determined by conventional thermodilatometry and differential thermal analysis. Thermoanalytical studies showed that the glass transformation temperature and dilatation softening temperature increase with increasing WO3 content while thermal expansion coefficient decreases. The highest stability towards crystallization possess glasses containing 20–30 mol% WO3. Major compounds formed by the crystallization of the glasses were Zn(PO3)2, WO3 and W18P2O59. The values of sphere temperature, hemisphere temperature and flow temperature obtained using heating microscopy were strongly influenced by the degree of crystallization process at the sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号