首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation and photocatalytic performance of the Fe2O3/g-C3N4 nanocomposites with different weight percentage of iron was investigated in this study. Samples were successfully synthesized using melamine and ferric nitrate as the precursors via the green and facile microwave-assisted method. The physicochemical and structural properties of the Fe2O3-doped g-C3N4 were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), the Brunauer–Emmett–Teller (BET) method, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet–visible spectroscopy (UV–Vis). The photocatalytic activity of the Fe2O3/g-C3N4 catalysts was evaluated by the degradation of methylene blue (MB) at room temperature under visible light irradiation. As expected, the as-synthesized samples exhibited considerable improvement in the photodegradation of MB. The Fe2O3/g-C3N4 (1.0 wt%) nanocomposite had superior photocatalytic activity, with almost 70% degradation efficiency within 90 min of irradiation. The enhanced performance was ascribed to the separation and migration of the photoinduced electron–hole pairs and taking part of the charge carriers in the chemical redox reactions at the surface of the photocatalyst. In this work, the effect of Fe weight percentage on the degradation potential was also studied, and the photocatalytic mechanism was proposed with the main reactive species •OH.  相似文献   

2.
As novel visible-light-induced photocatalysts, a series of magnetically recyclable Fe3O4/ZnO/CoWO4/Ag3VO4 nanocomposites were fabricated through successive combination of Fe3O4/ZnO with CoWO4 and Ag3VO4. A facile refluxing-calcination procedure was employed to prepare these nanocomposites and they were characterized by various sophisticated instruments including XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, PL, as well as VSM and subsequently tested for photocatalytic degradations of three dyes and one colorless pollutants. The Fe3O4/ZnO/CoWO4/Ag3VO4 (20%) nanocomposite indicated excellent photodegradation for RhB under visible light, which is 78.4, 4.44, and 3.19 times superior to the Fe3O4/ZnO, Fe3O4/ZnO/Ag3VO4, and Fe3O4/ZnO/CoWO4 samples, respectively. Production of more electron-hole pairs due to presence of two small band gap semiconductors and retardation of the charge carriers from recombination due to formation of p-n-n heterojunctions are the main factors enhancing the photocatalytic performance. Additionally, the nanocomposite was readily recovered from the reaction solution using a magnet and its photocatalytic activity remained reasonable after some repetitive cycles.  相似文献   

3.
A novel chrysanthemum-shaped monocline ZnWO4 photocatalyst was synthesized by microwave-assisted hydrothermal method with Na2WO4·2H2O and Zn(NO3)2·6H2O as raw materials at different reaction temperatures. The prepared ZnWO4 photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy, Photoluminescence spectrum (PL) and UV–Vis absorption spectrum (UV–Vis). The photocatalytic property of the prepared chrysanthemum-shaped monocline ZnWO4 photocatalyst was evaluated by the degradation of Rhodamine B (RhB) in aqueous solution. The effects of reaction temperature on the photocatalytic degradation efficiency of RhB were investigated. The results indicated that the chrysanthemum-shaped monocline ZnWO4 photocatalyst is prepared by foliated powders with the sizes of about 30 nm and 500 nm respectively at 160 and 220 °C. The PL relative intensity of prepared ZnWO4 photocatalyst is apparently intensifying with increasing temperature. The photocatalytic property decreases with the increasing recombination probability of the excited electrons and holes. The chrysanthemum-shaped monocline ZnWO4 photocatalyst prepared at 160 °C possesses the best photocatalytic property, and the degradation efficiency of RhB at 180 min UV-light irradiation is achieved 75 %. The ZnWO4 has good reusability property on degradation of RhB and the degradation rate is still higher than 65 % after three cycles.  相似文献   

4.

In this paper, we report the synthesis of the BiOBr/BiOCl/PANI ternary nanocomposite using a simple co-precipitation method. The modified photocatalyst produced was characterized by the FT-IR, FE-SEM equipped with EDS (as a Map), TEM, XRD, PL, Raman, and UV–Vis DRS analytical techniques. The synergetic effect of PANI and surface defects in nanoplates can prolong the recombination rate of photo-generated charge carriers. Thus, photocatalytic and photoelectrochemical activities of samples have been studied. Then, the methyl orange (MO) degradation performance of PANI/BiOBr and BiOBr/BiOCl/PANI was investigated under visible light irradiation. The lamp used to simulate sunlight in this photocatalytic study process was power down white light (5-W LED), less reported. The results got exhibited that the as-prepared BiOBr/BiOCl/PANI (90:10, Bi:PANI) nanocomposite showed a higher photocatalytic efficiency. Based on the scavenger tests, ·O2? played a significant role in the degradation of MO. The connection between BiOBr, BiOCl, and PANI improved photocatalytic activity, which enhanced migration rate of the photo-generated electrons besides limiting the recombination of photo-generated electron–hole pairs.

  相似文献   

5.
Nanocomposite of Fe3O4–nitrogen-doped graphene (Fe3O4–NG) was synthesized by single step hydrothermal method. The as-synthesized composite was characterised by various techniques such as powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and thermal analysis (TGA). The catalytic role of synthesized nanocomposite in visible light induced photodegradation of methyl orange (MO; acidic dye) and methylene blue (MB; basic dye) was explored. The role of Cu(II) ions on the photodegradation of the organic dyes was also monitored. Cu(II) ions enhance the photocatalytic activity of nanocomposite by capturing photoelectron, thereby quenching the recombination process of electron–hole pair in photocatalyst.  相似文献   

6.
Visible-light-driven dumbbell-like BiVO4 and Ag/BiVO4 photocatalysts has been successfully synthesized by a simple hydrothermal method at 180 °C for 24 h. The as-synthesized photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–Vis absorption spectroscopy. The results obtained showed that ethylenediamine, citric acid, pH and hydrothermal reaction temperature have pronounced effects on the morphology of BiVO4. Transmission electron microscopy observation shows that the Ag nanoparticles are homogenously dispersed on the surface of the BiVO4 nanorods. Photocatalytic activities of the dumbbell-like BiVO4 and Ag-loaded BiVO4 photocatalysts were also evaluated by using methylene blue as a representative dye indicator under visible light irradiation. It is found that the photocatalytic performance of the as-synthesized BiVO4 is obviously improved with the incorporation of the Ag nanoparticles. Mechanism for the enhancement of the photocatalytic activity of the Ag/BiVO4 photocatalyst is also discussed.  相似文献   

7.
利用微波法合成纳米尺寸Ag@AgBr表面敏化K2Ti4O9的复合光催化剂(Ag@AgBr/K2Ti4O9),并通过SEM、X-射线能量色散谱(EDX)、TEM、选定区域电子衍射(SAED)、XRD、紫外-可见漫反射(UV-VisDiffuseReflectance)、XPS等对其进行了表征,同时在可见光下测定催化剂对有机物降解的光催化活性。结果表明,粒径为0.2~0.5μm的Ag@AgBr均匀分散在K2Ti4O9表面,Ag@AgBr/K2Ti4O9对可见光有很好的吸收且Ag@AgBr的担载量影响可见光的吸收。当Ag@AgBr的担载量为25wt%时,复合光催化剂具有最高的光催化活性,光照1h对罗丹明B(RhB)的降解率可达97%。另外,催化剂的担载量和稳定性也做了考察。催化剂较高的光催化活性主要归因于Ag纳米粒子的表面等离子体效应和有效的光生电子-空穴的分离。  相似文献   

8.
Novel Bi2WO6‐coupled Fe3O4 magnetic photocatalysts with excellent and stable photocatalytic activity for degrading tetracycline hydrochloride and RhB were successfully synthesized via a facile solvothermal route. Through the characterization of the as‐prepared magnetic photocatalysts by X‐ray diffractometry, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, it was found that the as‐prepared magnetic photocatalysts were synthesized by the coupling of Bi2WO6 and Fe3O4, and introduction of appropriated Fe3O4 can improve nanospheres morphology and visible‐light response. Among them, BFe2 (0.16% Fe3O4) exhibited the best photocatalytic activity for degradation of tetracycline hydrochloride (TCH), reaching 81.53% after 90 min. Meanwhile, the as‐prepared magnetic photocatalysts showed great separation and recycle property. Moreover, the results of electrochemical impedance spectroscopy demonstrated that the well conductivity of Fe3O4 can promote photogenerated charge carriers transfer and inhibit recombination of electron–hole pairs, so that Bi2WO6/Fe3O4 exhibited enhanced photocatalytic activity on degradation of TCH and RhB. Hence, this work provides a principle method to synthesize Bi2WO6/Fe3O4 with excellent photocatalytic performance for actual application, in addition, it showed that introduction of Fe3O4 not only can provide magnetism, but also can enhance photocatalytic activity of Bi2WO6/Fe3O4 magnetic photocatalysts.  相似文献   

9.
分别以乙二醇/去离子水为溶剂,通过溶剂热/水热法分别制备了具有不同主导晶面的BiOIO3/{110}BiOCl和BiOIO3/{001}BiOCl异质结。采用X射线衍射、扫描电子显微镜、能量色散谱和紫外可见漫反射光谱对制备的BiOIO3/BiOCl光催化剂进行了表征。在可见光照射下,通过对罗丹明 B和苯酚水溶液的光催化降解,考察了 BiOIO3/BiOCl异质结的光催化活性。结果显示25% BiOIO3/{110}BiOCl异质结具有最高的光催化效率。BiOIO3/{110}BiOCl较好的光催化性能是由于其在可见光区较强的光吸收,以及异质结结构和BiOCl所具有的(110)主导晶面有利于光生载流子的分离。超氧自由基(·O2-)和空穴(h+)是光催化过程中的主要活性物质。此外,根据实验结果探讨了光催化性能增强的机理。  相似文献   

10.
The plasmonic Ag-TiO2 (with 0.5 wt% Ag) photocatalyst was prepared on P25 TiO2 surface. The presence of AgNPs on the titania was indicated by the UV–vis spectrum, which showed a plasmonic absorbance band in the visible range (λ max?=?455 nm). XPS measurements suggested that Ag was in metallic (Ag) and in oxide forms on TiO2. Ag-TiO2 photocatalyst and TiO2 were embedded in [poly(ethyl acrylate-co-methyl methacrylate; p(EA-co-MMA)] copolymer to attain mechanically stable, photocatalytically active nanocomposite films. The photooxidation of ethanol was slower on the photocatalyst/polymer nanocomposites, but it could be significantly improved by irradiating them with UV light. The photoaging was applied as a post-preparation treatment to improve the photocatalytic activity of the nanocomposite films. Changed surface morphology and the partial destruction of the polymer were supported by AFM and FTIR results. Contact angle measurements were used to determine the surface free energies of the prepared and the photoaged nanocomposite films.  相似文献   

11.
Preparation of samarium-doped mesoporous titanium dioxide (Sm/MTiO2) coated magnetite (Fe3O4) photocatalysts (Sm/MTiO2/Fe3O4) and their activities under visible light were reported. The catalysts with Sm/MTiO2 shell and a Fe3O4 core were prepared by coating photoactive Sm/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of Sm(NO3)3 and TBT in the presence of Fe3O4 nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by BET surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of Sm ion content on the photocatalytic activity was studied. The photocatalytic activities of obtained photocatalysts under visible light were estimated by measuring the decomposition rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Sm/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.  相似文献   

12.
分别以乙二醇/去离子水为溶剂,通过溶剂热/水热法分别制备了具有不同主导晶面的BiOIO3/{110}BiOCl和BiOIO3/{001}BiOCl异质结。采用X射线衍射、扫描电子显微镜、能量色散谱和紫外可见漫反射光谱对制备的BiOIO3/BiOCl光催化剂进行了表征。在可见光照射下,通过对罗丹明B和苯酚水溶液的光催化降解,考察了BiOIO3/BiOCl异质结的光催化活性。结果显示25%BiOIO3/{110}BiOCl异质结具有最高的光催化效率。BiOIO3/{110}BiOCl较好的光催化性能是由于其在可见光区较强的光吸收,以及异质结结构和BiOCl所具有的(110)主导晶面有利于光生载流子的分离。超氧自由基(·O2-)和空穴(h+)是光催化过程中的主要活性物质。此外,根据实验结果探讨了光催化性能增强的机理。  相似文献   

13.
光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150 min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90 m2/g,其吸收波长红移,由紫外光扩展至可见光区域,带隙能也由3.2降低为1.87 eV,能带弯曲形成p-n异质结,提高了电子-空穴的转移效率,抑制其复合;m-Bi2O4/BiOCl的光电流密度高于m-Bi2O4和BiOCl,电子-空穴的分离效率更高,因而其催化性能更优越.  相似文献   

14.
In this work we synthesize a novel and highly efficient photocatalyst for degradation of methyl orange and rhodamine B. In addition, a new method for synthesis of Fe_3O_4@SiO_2@TiO_2@Ho magnetic core-shell nanoparticles with spherical morphology is proposed. The crystal structures, morphology and chemical properties of the as-synthesized nanoparticles were characterized using Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray(EDS), X-ray diffraction(XRD), UV–vis diffuse reflectance spectroscopy(DRS) and vibrating sample magnetometer(VSM) techniques. The photocatalytic activity of Fe_3O_4@SiO_2@TiO_2@Ho was investigated by degradation of methyl orange(MO) as cationic dye and rhodamine B(Rh B) as anionic dye in aqueous solution under UV/vis irradiation. The results indicate that about 92.1% of Rh B and78.4% of MO were degraded after 120 and 150 min, respectively. These degradation results show that Fe_3O_4@SiO_2@TiO_2@Ho nanoparticles are better photocatalyst than Fe3O4@Si O2@TiO 2@Ho for degradation of MO and Rh B. As well as, the catalyst shows high recovery and stability even after several separation cycles.  相似文献   

15.
In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS–NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS–NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous media. The degradation rate constant (kapp) of the optimized photocatalyst, i.e. CdS–NiFe2O4 (0.05)/rGO 25 wt% nanocomposite, was higher than the corresponding CdS and NiFe2O4 nanoparticles by factors of 11.1 and 8.9, respectively. The synergistic interactions between CdS, NiFe2O4 and rGO lead to enhanced surface area, reduced aggregation of the nanoparticles, decreased the recombination of photogenerated electron–hole pairs, and increased the charge separation efficiency and effective electron–hole generation transfer. According to the obtained results, a proposed mechanism of the photodegradation of MB under visible light irradiation is finally mentioned.  相似文献   

16.
利用微波法合成纳米尺寸Ag@AgBr表面敏化K2Ti4O9的复合光催化剂(Ag@AgBr/K2Ti4O9),并通过SEM、X-射线能量色散谱(EDX)、TEM、选定区域电子衍射(SAED)、XRD、紫外-可见漫反射(UV-Vis Diffuse Reflectance)、XPS等对其进行了表征,同时在可见光下测定催化剂对有机物降解的光催化活性。结果表明,粒径为0.2~0.5μm的Ag@AgBr均匀分散在K2Ti4O9表面,Ag@AgBr/K2Ti4O9对可见光有很好的吸收且Ag@AgBr的担载量影响可见光的吸收。当Ag@AgBr的担载量为25wt%时,复合光催化剂具有最高的光催化活性,光照1h对罗丹明B(RhB)的降解率可达97%。另外,催化剂的担载量和稳定性也做了考察。催化剂较高的光催化活性主要归因于Ag纳米粒子的表面等离子体效应和有效的光生电子-空穴的分离。  相似文献   

17.
采用硼氢化钠还原法制备了Ag负载Cd Mo O4光催化剂。运用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等测试手段对催化剂的组成和结构进行了表征;采用紫外-可见漫反射光谱(UV-Vis DRS)和X射线光电子能谱(XPS)等技术对催化剂的光响应和表面状态进行了分析,考察了不同Ag负载量对Cd Mo O4紫外光降解罗丹明B和可见光选择性氧化苯甲醇性能的影响。结果表明,与Cd Mo O4相比,Ag/Cd Mo O4具有更高的光催化活性。利用活性物种捕获实验探讨其光催化降解过程的反应机理,实验结果显示O2-·和·OH是光催化降解过程的主要活性物种。  相似文献   

18.
《中国化学快报》2022,33(8):3705-3708
A kind of CdS/Cd-BiOCl immobilized films photocatalyst was prepared. The optical and physicochemical properties of the CdS/Cd-BiOCl photocatalysts were analysed, and the detailed characterization revealed CdS/Cd-BiOCl films photocatalyst with good charge carrier separation effect. The reusabilities and photocatalytic properties of the samples were studied. The 15%CdS/Cd-BiOCl photocatalyst exhibited superior performance in photocatalytic degradation of tetracycline (TC) and favorable stability under visible light irradiation. As for the photodegradation rate of TC, 15%CdS/Cd-BiOCl exhibited an excellent photodegradation activity, which is 4.06 and 9.53 times higher than that of CdS/Cd and BiOCl, respectively. The results showed that dominant active species are ?O2? and ?OH radicals during photodegradation. The charge transfer in Z-scheme CdS/Cd-BiOCl films photocatalyst could synchronously generate conduct band (CB) electrons in BiOCl and valence band (VB) holes in CdS, and metal Cd served as electron mediator. This work can be a reference for the design of film photocatalysts and new insight for photodegradating towards contaminants.  相似文献   

19.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   

20.
采用硼氢化钠还原法制备了Ag负载CdMoO4光催化剂。运用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等测试手段对催化剂的组成和结构进行了表征;采用紫外-可见漫反射光谱(UV-Vis DRS)和X射线光电子能谱(XPS)等技术对催化剂的光响应和表面状态进行了分析,考察了不同Ag负载量对CdMoO4紫外光降解罗丹明B和可见光选择性氧化苯甲醇性能的影响。结果表明,与CdMoO4相比,Ag/CdMoO4具有更高的光催化活性。利用活性物种捕获实验探讨其光催化降解过程的反应机理,实验结果显示O2-·和·OH是光催化降解过程的主要活性物种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号