首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results on the thermal expansion and magnetostriction of YFe12−xVx (1.5≤x≤3.5) alloys are reported. The results show that the anisotropic magnetostriction (Δλ) at a finite field (1.5 T) increases with increasing vanadium content in the range of x<2. But for x>2, a decrease in the magnetic anisotropy with increasing vanadium content causes a decrease in the saturation values of Δλ. In addition, the thermal expansion coefficient becomes a minimum for x≈2. Experimental curves exhibit that the forced volume magnetostriction (ΔV/V) is positive and increases linearly with the applied field at high fields. But in the low field region (≤0.5 T), a minimum appears in the isothermal curves of ΔV/V around the saturation field. The results are explained by considering the influence of vanadium content on the magnetization anisotropy of YFe12−xVx compounds.  相似文献   

2.
We report on the linear and nonlinear conductivity measurements on charge-ordered La1?xCaxMnO3 (x≈0.5 and x=0.75). Upon cooling below room temperature, the onset of charge ordering—Tco is marked by a peak in the logarithmic derivative of the resistivity (d ln ρ/d(1/T)) and by a change in the slope of the thermopower as a function of temperature. The IV characteristics of samples with negative coefficient of resistivity (x=0.52 and 0.75) was measured by DC and pulsed currents. We show how the nonlinearity of the IV characteristics vanishes when short, single current pulses are used. This work shows that when searching for dramatic phenomena such as sliding charge density waves in samples with negative temperature coefficient of resistivity, the first step should be to check if the IV nonlinearity persists when using single, short current pulses.  相似文献   

3.
Optical measurements on crystals in the series SnSxSe2?x for 0 ? x ? 2, have yielded information on the changes in the ordinary refractive index ΔnΔT and the energy gap ΔEgΔT in the temperature range 125–425 K. The coefficient ΔnΔT has values +40 to +160 × 10?6K?1 and this confirms that covalent bonding predominantly exists in these materials. The coefficient ΔEgΔT remains fairly consistent for all values of x with an average value of -8.0×10-4eV K-1.  相似文献   

4.
Temperature dependences of the specific heat C and the magnetic susceptibility χ of Na1?x V2O5 single crystals (x=0, 0.01, 0.02, 0.03, and 0.04) are studied. In NaV2O5, the transition to the spin-gap state (T c =34 K) is accompanied by a sharp decrease in χ, while C exhibits a λ-shaped anomaly. At low temperatures, the specific heat of NaV2O5 is approximated by the sum of phonon ~T 3 and magnon ~exp(?Δ/T) contributions, which makes it possible to estimate the Debye temperature ΘD=336 K and the gap in the magnetic excitation spectrum Δ=112 K. With the departure from stoichiometry, the anomalies observed in the behavior of χ and C are spread and shifted to lower temperatures. The low-temperature specific heat of nonstoichiometric samples is determined by the sum of phonon and magnon components and the contribution due to the presence of defects. The values of magnetic entropy characterizing the phase transitions in Na1?x V2O5 are calculated.  相似文献   

5.
Both magnetic and electric field dependences of transport coefficients are investigated on the layered material Ti1-xVxSe2 (x = 0.01). In contrast to semimetallic TiSe2, the resistivity of the V-doped samples increases with decrease of temperature even in the low temperature region. At liquid helium temperatures it is found that the resistivity is strongly dependent on electric field strength. The behaviour of the nonlinear conduction is similar to that observed in 1T-TaS2. In the low field (Ohmic) region anomalously large negative mangetoresistance is observed, Δ?/?0 = -80% at 1.6 K and 60 KOe. Moreover the Hall coefficient is also found to depend on both magnetic and electric fields. All the experimental data suggests that mobile carriers are excited by the applied fields.  相似文献   

6.
1T-V1+xTe2 was synthesized in a composition range of 0.04?x?0.11. The reversible first order transition was observed by DTA (DSC), powder X-ray diffraction, magnetic susceptibility (χ), and d.c. electrical resistivity (?) measurements. Transition temperature (Tt is 474 K for V1.04Te2, and decreases with increasing x. Heat of transition, ΔH was estimated to be as high as 500 cal mol?1 from the endothermical peak in DSC. The expansion of the c-axis is observed at Tt. χ exhibits a jump at Tt, showing the paramagnetic temperature dependence both below and above Tt. ? measurements show the metallic-like behavior with a slight decrease at Tt. Preliminary electron diffraction examination suggests the formation of a super-structure below Tt.  相似文献   

7.
Electron paramagnetic resonance on La2/3−xYxCa1/3MnO3 in the paramagnetic (PM) regime is presented for 0≤x≤0.133. The resonance linewidth (ΔHpp) decreases with cooling, reaches the minimum at Tmin, and then anomalously increases with further cooling toward Tc. Our analysis on ΔHpp(T) below Tmin shows that the anomalous PM behavior below Tmin is due to the appearance of a ferromagnetic (FM) phase within the PM matrix caused by the applied magnetic fields. The correlation between the anomalous PM and the colossal magnetoresistance is discussed. We argue that both are caused by the phase segregation in which the compound is phase-separated into a mixture of FM and PM regions.  相似文献   

8.
The magnetostriction of the off-stoichiometric R2Fe17-type intermetallic compounds based on R2Fe14−xCoxSi2 (R=Y, Er, Tm and x=0, 4) was measured, using the strain gauge method in the temperature range 77-460 K under applied magnetic fields up to 1.5 T. All compounds show sign change and reduction in magnetostriction values compared to the R2Fe17 compounds by Si substitution. For Y2Fe14Si2 and Er2Fe14Si2, saturation behaviour is observed near magnetic ordering temperature (TC), whereas for Tm2Fe14Si2, saturation starts from T>143 K. Also, Co substitution has different effects on the magnetostriction of R2Fe14Si2 compounds. In Er2Fe10Co4Si2 and Tm2Fe10Co4Si2, saturation occurs below the spin reorientation temperature (TSR). In addition, in Er2Fe14Si2, a sign change occurs in the anisotropic magnetostriction (Δλ) as well as the volume magnetostriction (ΔV/V) at their TSR values. The volume magnetostrictions of the Tm-containing compounds show an anomaly around their TSR. In R2Fe14Si2 compounds, parastrictive behaviour is also observed in ΔV/V near their TC values. In addition, the magnetostriction of the sublattices is investigated. Results show that in R2Fe14Si2 compounds, the rare-earth sublattice contribution to magnetostriction is negative and comparable to the iron sublattice, whereas, in R2Fe10Co4Si2 compounds, the rare-earth sublattice contribution is positive and larger than Fe sublattice. These results are discussed based on the effect of Si and Co substitutions on the anisotropy field of these compounds. Influence of the spin reorientation transition on the magnetostriction of these compounds is discussed in terms of the anisotropic sublattice interactions.  相似文献   

9.
The EMF of the isothermal cells: Ag/AgI/AgxTiS2: 0<x<1, T=150–200°C/AgxNiPS3: 0<x<3, T=150–350°C has been measured. From the EMF-x curves the existence ranges of the 2-phase (stage I and II) regions ?0.16<x<0.32 for the Ag/AgxTiS2 system at 190°C; 0.20 < x < 0.50 and 1 < x < 2 for the Ag/AgxNiPS3 system at 400°C - have been determined. The results are sustained by X-ray diffraction and electrical conductivity measurements. From the EMF-T curves the partial enthalpy (ΔH?Ag) and entropy (ΔS?Ag) of dissolution of silver in the AgxSSE (solid solution electrode) materials were obtained. In the case of AgxTiS2, ΔH?Ag has a low absolute value, while ΔS?Ag is distinctly positive. The EMF of the Ag/AgxNiPS3 system also has a positive temperature coefficient. Furthermore, the ionic component of the thermoelectric power, ΔET, of the thermogalvanic cells: Ag/AgI/AgxSSE/AgI/Ag AgxTiS2: 0 < x < 1, T = 150–200°C( T ) (T+ΔT) AgxNiPS3: 0 < x < 1, T= 150–350°C has been measured. The kinetically important heat of transport of silver ions in the AgxSSE materials has been determined in two ways: first from the dependence of the ionic Seebeck coefficient (?Ag+) on reciprocal temperature; and second from direct calculation, using the data for ?Ag+ and ΔS?Ag. The heat of transport is much smaller than the activation enthalpy for Ag+-conduction, indicating a high ionic polaron binding energy in these materials.  相似文献   

10.
A relationship between physical properties and local structure of 20Li2O·10Fe2O3·xWO3·(70–x)V2O5 glass, abbreviated as xLFWV glass (x?=?0???25 in mol%), was investigated by 57Fe-Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), leaching test using 20 vol% HCl and DC two- or four-probe method. 57Fe-Mössbauer spectra of xLFWV glass showed an increase of quadrupole splitting (Δ) from 0.67 to 0.73±0.02 mm s???1 and a constant isomer shift (δ) of 0.39±0.01 mm s???1 with an increase of ‘x’ from 0 to 25. This suggests that FeIIIO4 tetrahedra gradually increase their local distortion along with a substitution of WO3 for V2O5. DTA of xLFWV glass showed an increase in glass transition temperature (T g) from 252 to 298 $_{\pm 5}^{\circ}$ C with an increase of ‘x’. Composition dependency of T g and Δ indicates that FeIII atoms occupy substitutional sites of WO6 octahedra as network former (NWF), since a large slope of 680 K (mm s???1)???1 was obtained in T g ? Δ plot. Comparable electrical conductivities (σ) of 2.5 × 10???6, 1.9 × 10???6, 8.4 × 10???7 and 2.9 × 10???6 S cm???1 obtained for xLFWV glasses with ‘x’ of 0, 10, 20 and 25, respectively increased to 2.4 × 10???2, 2.4 × 10???3, 3.5 × 10???4 and 8.8 × 10???5 S cm???1 after annealing at 400 °C for 100 min. Smaller Δ values of 0.58 and 0.67±0.02 mm s???1 obtained in annealed xLFWV glasses with ‘x’ of 0 and 10, respectively indicate that structural relaxation occurs in VO4 units of vanadate glass units, as had been observed in other vanadate glasses.  相似文献   

11.
A study is reported on the electrical and magnetic characteristics of the FexV1?x S solid-solution system with x≤0.5. A maximum in the temperature dependence of resistivity ρ(T) characteristic of the Kondo effect has been observed for small x(x<0.01). For x>0.1, long-range magnetic order sets in in the system with T K ≈ 100 K. Near x=0.05, the Fe2+ impurity behavior crosses over to a magnetically ordered phase. The electronic properties of FexV1?x S are typical of those of strongly correlated electronic systems. Both the electrical and magnetic data imply that carrier delocalization is the strongest at x=0.4.  相似文献   

12.
The resistance R, the superconducting transition temperature Tc and the energy gap Δ(T) have been measured on the BaPb0.7Bi0.3O3 films up to 14 kbar. We have found that up to 14 kbar: (1) pressure suppresses Tc and Δ(T) while enhances R, (2) the value of 2Δ(0)/kTc is 3.8±0.1, independent of pressure, and (3) the Δ(T)/Δ(0) varies with T/Tc in a BCS fashion but only for T/Tc<0.75 and independent of pressure. The results show that BaPb1?xBixO3 is a weak-coupling superconductor, but fail to provide information about the cause for the high Tc of the compound.  相似文献   

13.
We show that the zero-field normal-state resistivity of temperature-dependent resistivity ρ(T) of SrFe2?xNixAs2 can be reproduced by the expression ρ(T) = ρ0 + c T exp(?2Δ/T). ρ(T) can be scaled using both this expression where the energy scale Δ, c and the residual resistivity ρ0 are scaling parameters and a recently proposed model-independent scaling method (H.G. Luo, Y.H. Su, T. Xiang, Phys. Rev. B 77 (2008) 014529). The scaling parameters have been calculated and the compositional variation of 2Δ(x) has been determined. This dependence show almost a linear decreasing in the underdoped regime similar to that reported for cuprates. The existence of a universal metallic ρ(T) curve in a wide temperature range which, however, is restricted for the underdoped compounds to temperatures above a structural and anitiferromagnetic transition is interpreted as an indication of a single mechanism which dominates the scattering of the charge carriers in SrFe2?xNixAs2 (x = 0–0.3).  相似文献   

14.
Nuclear spin relaxation rate T?11 for 51V in an incommensurate antiferromagnetic Cr1?xVx system has been measured in a temperature range between 1.3 and 4.2 K and in a range of magnetic field from 0 to 13.3 kOe by using a field-cycling nuclear magnetic resonance technique. In the (T1T)?1 vs x curve a pronounced maximum was observed near the critical concentration (xc~0.040). Furthermore for alloys with x = 0.038 and 0.040 a deviation from the Korringa relation, T1T = constant, was observed. The experimental results of (T1T)?1 are interpreted in terms of the spin-fluctuation and d-orbital contributions.  相似文献   

15.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

16.
Measurements of the heat capacity and the magnetic susceptibility have revealed BCS-like behaviour in the superconducting state of itinerant antiferromagnetic Cr1?xRex alloys for x = 0.30) and 0.26. The thermodynamic quantities, such as electronic heat capacity and thermodynamic critical field have been reproduced with the BCS theory with the energy gap Δ = (1.76 ± 0.05)kBTs, where TS is the superconducting transition temperature for the corresponding system: TS = 3.61 K (2.35 K) for x = 0.30 (0.26).  相似文献   

17.
Highly oriented (100) thin films of LaVO3 and La1−xSrxVO3 have been fabricated by pulsed laser deposition in a reducing atmosphere. The films show a transition from insulating to metallic behaviour in the composition region of x, 0.175<x<0.200. In the single crystals of the antiferromagnetic insulating phase, a first-order structural phase transition is observed few degrees below the magnetic transition, which manifests itself as a kink in the temperature dependence of resistivity. In the highly oriented thin films of LaVO3 and La1−xSrxVO3 fabricated on lattice matched substrates in this study, the structural phase transformation in the insulating phase has been suppressed. The electrical conduction is found to take place via hopping through localized states at low temperatures. The metallic compositions show a non-linear (T1.5) behaviour in the temperature dependence of resistivity. V (2p) core level spectra of these films show a gradual change in the relative intensities of V3+ and V4+ ions as the value of x increases.  相似文献   

18.
《Current Applied Physics》2020,20(6):794-801
Orthorhombic La0.7-xEuxCa0.3MnO3 samples (x = 0.04–0.12) with apparent density of ρ = 3.9–4.1 g/cm3 prepared by solid-state reactions have been studied. The analysis of temperature-dependent magnetization for an applied field H = 500 Oe indicated a decrease of the Curie temperature (TC) from about 225 K for x = 0.04 through 189 K for x = 0.08–146 K for x = 0.12. The magnetocaloric (MC) study upon analyzing M(H, T) data has revealed that the magnetic entropy change around TC reaches the maximum (|ΔSmax|), which is dependent on both x and H. For an applied field interval of ΔH = 60 kOe, |ΔSmax| values are about 5.88, 4.93, and 4.71 J/kg⋅K for x = 0.04, 0.08, and 0.12, respectively. Though |ΔSmax| decreases with increasing x, relative cooling power (RCP) increases remarkably from 383 J/kg for x = 0.04 to about 428 J/kg for x = 0.08 and 0.12. This is related to the widening of the ferromagnetic-paramagnetic transition region when x increases. Particularly, if combining two compounds with x = 0.04 and 0.08 (or 0.12) as refrigerant blocks for MC applications, a cooling device can work in a large temperature range of 145–270 K, corresponding to RCP ≈ 640 J/kg for H = 60 kOe. M(H) analyses around TC have proved x = 0.04 exhibiting the mixture of first- and second-order phase transitions while x = 0.08 and 0.12 exhibit a second-order nature. The obtained results show potential applications of Eu-doped La0.7Ca0.3MnO3 materials for magnetic refrigeration below room temperature.  相似文献   

19.
The initial magnetic susceptibility χr, the thermoremanent and isothermal remanent magnetizations have been measured below 10 K on single crystals of (Ti1?xVx)2O3 for x = 0.03, 0.05 and 0.07. The data clearly show a spin glass behaviour, with peaks in the curve χr(T). These results are related to the anomaly in the low temperature specific heat of these compounds, reported elsewhere. It is shown that this anomaly is mainly due to spin glass properties and only partly to electronic properties. This leads to a reinterpretation of the mechanism by which V in Ti2O3 induces the metallic phase and at the same time carries a magnetic moment.  相似文献   

20.
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号