首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Z(Sn;?(x)) denote the polynomial obtained from the cycle index of the symmetric group Z(Sn) by replacing each variable si by f(x1). Let f(x) have a Taylor series with radius of convergence ? of the form f(x)=xk + ak+1xk+1 + ak+2xk+2+? with every a1?0. Finally, let 0<x<1 and let x??. We prove that
limn→∞Z(Sn;?(x))xkn = Πi=1k(1?xi)?ak+1
This limit is used to estimate the probability (for n and p both large) that a point chosen at random from a random p-point tree has degree n + 1. These limiting probabilities are independent of p and decrease geometrically in n, contrasting with the labeled limiting probabilities of 1n!e.In order to prove the main theorem, an appealing generalization of the principle of inclusion and exclusion is presented.  相似文献   

2.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

3.
The following estimate of the pth derivative of a probability density function is examined: Σk = 0Na?khk(x), where hk is the kth Hermite function and a?k = ((?1)pn)Σi = 1nhk(p)(Xi) is calculated from a sequence X1,…, Xn of independent random variables having the common unknown density. If the density has r derivatives the integrated square error converges to zero in the mean and almost completely as rapidly as O(n?α) and O(n?α log n), respectively, where α = 2(r ? p)(2r + 1). Rates for the uniform convergence both in the mean square and almost complete are also given. For any finite interval they are O(n?β) and O(n2log n), respectively, where β = (2(r ? p) ? 1)(2r + 1).  相似文献   

4.
Let V be a set of n points in Rk. Let d(V) denote the diameter of V, and l(V) denote the length of the shortest circuit which passes through all the points of V. (Such a circuit is an “optimal TSP circuit”.) lk(n) are the extremal values of l(V) defined by lk(n)=max{l(V)|VVnk}, where Vnk={V|V?Rk,|V|=n, d(V)=1}. A set VVnk is “longest” if l(V)=lk(n). In this paper, first some geometrical properties of longest sets in R2 are studied which are used to obtain l2(n) for small n′s, and then asymptotic bounds on lk(n) are derived. Let δ(V) denote the minimal distance between a pair of points in V, and let: δk(n)=max{δ(V)|VVnk}. It is easily observed that δk(n)=O(n?1k). Hence, ck=lim supn→∞δk(n)n1k exists. It is shown that for all n, ckn?1k≤δk(n), and hence, for all n, lk(n)≥ ckn1?1k. For k=2, this implies that l2(n)≥(π212)14n12, which generalizes an observation of Fejes-Toth that limn→∞l2(n)n?12≥(π212)14. It is also shown that lk(n) ≤ [(3?√3)k(k?1)]nδk(n) + o(n1?1k) ≤ [(3?√3)k(k?1)]n1?1k + o(n1?1k). The above upper bound is used to improve related results on longest sets in k-dimensional unit cubes obtained by Few (Mathematika2 (1955), 141–144) for almost all k′s. For k=2, Few's technique is used to show that l2(n)≤(πn2)12 + O(1).  相似文献   

5.
Let fk(n) denote the maximum of k-subsets of an n-set satisfying the condition in the title. It is proven that f2t ? 1(n) ? f2t(n + 1) ? (tn)(t2t?1) with equalities holding iff there exists a Steiner-system S(t, 2t ? 1, n). The bounds are approximately best possile for k ? 6 and of correct order of magnitude for k >/ 7, as well, even if the corresponding Steiner-systems do not exist.Exponential lower and upper bounds are obtained for the case if we do not put size restrictions on the members of the family (i.e., the nonuniform case).  相似文献   

6.
Let S denote a set of n points in the Euclidean plane. A subset S′ of S is termed a k-set of S if it contains k points and there exists a straight line which has no point of S on it and separates S′ from S?S′. We let fk(n) denote the maximum number of k-sets which can be realized by a set of n points. This paper studies the asymptotic behaviour of fk(n) as this function has applications to a number of problems in computational geometry. A lower and an upper bound on fk(n) is established. Both are nontrivial and improve bounds known before. In particular, fk(n) = fn?k(n) = Ω(n log k) is shown by exhibiting special point-sets which realize that many k-sets. In addition, fk(n) = fn?k(n) = O(nk12) is proved by the study of a combinatorial problem which is of interest in its own right.  相似文献   

7.
In this paper we are constructing a recurrence relation of the form
i=0rωi(k)mk+i{λ} [f] = ω(k)
for integrals (called modified moments)
mk{λ}[f]df=?11 f(x)Ck(λ)(x)dx (k = 0,1,…)
in which Ck(λ) is the k-th Gegenbauer polynomial of order λ(λ > ?12), and f is a function satisfying the differential equation
i=0n Pi(x)f(i)(x) = p(x) (?1?x?1)
of order n, where p0, p1, …, pn ? 0 are polynomials, and mkλ[p] is known for every k. We give three methods of construction of such a recurrence relation. The first of them (called Method I) is optimum in a certain sense.  相似文献   

8.
Asymptotic results are obtained for pA(k)(n), the kth difference of the function pA(n) which is the number of partitions of n into integers from A. Under certain restrictions on A it is shown that
PA(k+1)(n)PA(k)(n) = O(n?1/2) (n→ ∫)
thereby verifying for these A a conjecture of Bateman and Erdös.  相似文献   

9.
Using results from the theory of B-splines, various inequalities involving the nth order divided differences of a function f with convex nth derivative are proved; notably, f(n)(z)n! ? [x0,…, xn]f ? i = 0n(f(n)(xi)(n + 1)!), where z is the center of mass (1(n + 1))i = 0nxi.  相似文献   

10.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

11.
Let S be a Dirichlet form in L2(Ω; m), where Ω is an open subset of Rn, n ? 2, and m a Radon measure on Ω; for each integer k with 1 ? k < n, let Sk be a Dirichlet form on some k-dimensional submanifold Ωk of Ω. The paper is devoted to the study of the closability of the forms E with domain C0(Ω) and defined by: (?,g)=E(?, g)+ ip=1Eki(?ki, gki) where 1 ? kp < ? < n, and where ?ki, gki denote restrictions of ?, g in C0(Ω) to Ωki. Conditions are given for E to be closable if, for each i = 1,…, p, one has ki = n ? i. Other conditions are given for E to be nonclosable if, for some i, ki < n ? i.  相似文献   

12.
Let Ω denote a simply connected domain in the complex plane and let K[Ω] be the collection of all entire functions of exponential type whose Laplace transforms are analytic on Ω′, the complement of Ω with respect to the sphere. Define a sequence of functionals {Ln} on K[Ω] by Ln(f) = 12πiΓ gn(ζ) F(ζ) dζ, where F denotes the Laplace transform of f, Γ ? Ω is a simple closed contour chosen so that F is analytic outside and on Ω, and gn is analytic on Ω. The specific functionals considered by this paper are patterned after the Lidstone functions, L2n(f) = f(2n)(0) and L2n + 1(f) = f(2n)(1), in that their sequence of generating functions {gn} are “periodic.” Set gpn + k(ζ) = hk(ζ) ζpn, where p is a positive integer and each hk (k = 0, 1,…, p ? 1) is analytic on Ω. We find necessary and sufficient conditions for f ∈ k[Ω] with Ln(f) = 0 (n = 0, 1,…). DeMar previously was able to find necessary conditions [7]. Next, we generalize {Ln} in several ways and find corresponding necessary and sufficient conditions.  相似文献   

13.
For a(1) ? a(2) ? ··· ? a(n) ? 0, b(1) ? b(2) ? ··· ? b(n) ? 0, the ordered values of ai, bi, i = 1, 2,…, n, m fixed, m ? n, and p ? 1 it is shown that
1naibi ? 1map(i)1p1m?k?1 bq(i)+bq[m?k](k+1)qp1q
where 1p + 1q = 1, b[j] = b(j) + b(j + 1) + ··· + b(n), and k is the integer such that b(m ? k ? 1) ? b[m ? k](k + 1) and b(m ? k) < b[m ? k + 1]k. The inequality is shown to be sharp. When p < 1 and a(i)'s are in increasing order then the inequality is reversed.  相似文献   

14.
This paper treats the class of sequences {an} that satisfy the recurrence relation
a2n+1=∑k=0n(?1)k(nkakdn?k
between the odd and even terms of {an} that involves the coefficients of tan(t), namely
a2n+1=∑k=0n(?1)k(2n+12k+1)Tk(d/2)2k+1a2n?2k
A combinatorial setting is then provided to elucidate the appearance of the tangent coefficients in this equation.  相似文献   

15.
Given an integer k>0, our main result states that the sequence of orders of the groups SLk(Zn) (respectively, of the groups GLk(Zn)) is Cesàro equivalent as n→∞ to the sequence C1(k)nk2?1 (respectively, C2(k)nk2), where the coefficients C1(k) and C2(k) depend only on k; we give explicit formulas for C1(k) and C2(k). This result generalizes the theorem (which was first published by I. Schoenberg) that says that the Euler function ?(n) is Cesàro equivalent to n6π2. We present some experimental facts related to the main result. To cite this article: A.G. Gorinov, S.V. Shadchin, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

16.
It is shown that the compositional inverse of either of two transformations of a given series can be determined from the compositional inverse of the series. Specifically, if t · f(t) and t · g(t) are compositional inverses, then so are t · fk(t) and t · gk1(t), where fk(t) is the kth Euler transformation of f(t) and gk1(t) = g(t)(1 ? kt · g(t)).  相似文献   

17.
For a formal power series g(t) = 1[1 + ∑n=1hntn] with nonnegative integer coefficients, the compositional inverse f(t) = t · f(t) of g(t) = t · g(t) is shown to be the generating function for the colored planted plane trees in which each vertex of degree i + 1 is colored one of hi colors. Since the compositional inverse of the Euler transformation of f(t) is the star transformation [[g(t)]?1 ? 1]?1 of g(t), [2], it follows that the Euler transformation of f(t) is the generating function for the colored planted plane trees in which each internal vertex of degree i + 1 is colored one of hi colors for i > 1, and h1 ? 1 colors for i = 1.  相似文献   

18.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

19.
In two party elections with popular vote ratio pq, 12≤p=1 ?q, a theoretical model suggests replacing the so-called MacMahon cube law approximation (pq)3, for the ratio PQ of candidates elected, by the ratio ?k(p)?k(q) of the two half sums in the binomial expansion of (p+q)2k+1 for some k. This ratio is nearly (pq)3 when k = 6. The success probability gk(p)=(pa(pa+qa) for the power law (pq)a?PQ is shown to so closely approximate ?k(p)=Σ0k(r2k+1)p2k+1?rqr, if we choose a = ak=(2k+1)!4kk!k!, that 1≤?k(p)gk(p)≤1.01884086 for k≥1 if12≤p≤1. Computationally, we avoid large binomial coefficients in computing ?k(p) for k>22 by expressing 2?k(p)?1 as the sum (p?q) Σ0k(4pq)sas(2s+1), whose terms decrease by the factors (4pq)(1?12s). Setting K = 4k+3, we compute ak for the large k using a continued fraction πak2=K+12(2K+32(2K+52(2K+…))) derived from the ratio of π to the finite Wallis product approximation.  相似文献   

20.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号