首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
毛细管电泳安培检测扑热息痛及其水解物   总被引:1,自引:0,他引:1  
刘峻  周伟红 《分析化学》1995,23(11):1256-1260
研究了各种电化学预处理条件下碳纤维电极对扑热息痛及水解物的电化学行为。确定该体系最佳预处理条件为0.2V电位下阳极化1min,再于-2.0V下阴极化10s。预处理后的碳纤维伏安响应得到明显提高。运用最佳条件并在支持电解中加入添加剂后,扑热息痛及其水解物在毛细管电泳上获得很好的分离和检测。其中扑热息痛的检测下限为2.78pg;对氨基酚为1.84pg。  相似文献   

2.
傅承光  徐宏达 《色谱》1995,13(5):365-367
研究了适于分离检测四环素类药物的高效液相色谱荧光检测方法。为提高分析灵敏度,使用了柱后调节pH技术。探讨了pH以及胶束浓度对荧光强度的影响。四种药物的检出限达8.0~75.6pg的水平。  相似文献   

3.
镧系螯合物荧光免疫分析法测定对硫磷   总被引:2,自引:0,他引:2  
本文应用一种新的镧系螯合物荧光标记法研究在药对硫磷的免疫分析测定,并作了血清、尿和水样品的回收分析,检测下限为100pg/mL,回收率87—102%。  相似文献   

4.
用反相离子对高效液相色谱-电化学检测法分离并同时测定了大鼠脊髓灌流液中部分单胺类神经递质及其代谢产物。选择了较为理想的色谱条件,使生物样品的检测限达到80~670pg,单胺类递质代谢产物的回收率保持在83%~106%范围内。  相似文献   

5.
离子对高效液相色谱荧光检测法测定四环素类药物   总被引:4,自引:0,他引:4  
报道了利用Al^3+作为柱前衍生试剂,高效液相色谱分离荧光检测法检测测定甲环素类药物的新方法。探讨了四环素类药物-Al^3+络合物的衍生条件及其色谱分离条件对荧光强度的影响,3种药物的检出限达70 ̄150pg。  相似文献   

6.
石墨探针-石墨炉原子吸收光谱法测定人发中痕量镍   总被引:1,自引:0,他引:1  
石墨探针原子化技术是一种实现等温原子化和改善灵敏行之有效的方法,采用此方法对痕量镍的测定作了一系列条件试验,峰面积与镍浓度在0-200ng/mL范围内呈线性关系,特征量为51.83pg,检出限为86.82pg,相对标准偏差为3.86%。  相似文献   

7.
玻璃载体表面脱氧核糖核酸的固定及其化学发光检测   总被引:2,自引:0,他引:2  
张国军  周宜开 《分析化学》1998,26(10):1205-1208
用硅烷化偶联剂把DNA直接共价固定在载玻片表面,将辣根过氧化物酶标记的探针与之进行核酸杂交,杂交后用增强的化学发光检测。方法的检出限为75pg。研究了DNA分子固定在玻璃载体表面的各种条件,并建立了在玻璃载体表面进行核酸杂交的体系,为研究光纤DNA生物传感器打下了基础。  相似文献   

8.
采用钯,钯-镁作基体改进剂,FIA-HG-GFAAS法成功地测定了锗。灵敏度、精密度和分析速度都得到很大的提高。峰值吸收的特征质量8.0pg,检出限10.9pg,相对标准偏差0.34%,同时探讨了基体改进剂钯的稳定作用机理及锗在石墨管中的原子化机理。  相似文献   

9.
采用钯,钯-镁作基体改进剂,FIA-HG-GFAAS法成功地测定了锗。灵敏度,精密度和分析速度都得到很大的提高,峰值吸收的特征质量8.0pg,检出限10.9pg,相对标准偏差0.34%,同时探讨了基体改进剂钯的稳定作用机理及锗在石墨管中的原子化机理。  相似文献   

10.
膜上痕量亚甲蓝样品的间接光声检测   总被引:4,自引:0,他引:4  
何金兰  李小戈 《分析化学》1997,25(6):640-643
介绍了一种新的膜上痕量样品分析方法与实验装置。利用间接光声效应对光吸收物质进行检测,全文对方法原理、实验装置以及影响因素进行了详尽讨论。膜上亚甲蓝定量线性范围1×10^-6 ̄1×10^-4mol/L,检出限为46pg。  相似文献   

11.
Accurate measurement of trace levels of endogenous compounds remains challenging despite advancements in analytical technologies. In particular, monoamine neurotransmitters such as dopamine (DA) and serotonin (5-HT) are polar compounds with low molecular weights, which complicates the optimization of retention and detection on liquid chromatography-mass spectrometry (LC-MS). Microdialysis is an important sampling technique to collect extracellular fluid from the brain of living animals. However, the very low basal concentrations of the neurotransmitters, small sample volume (maximum 30 μL) and the absence of matrix-matching calibrators are limitations of a microdialysate as an analytical sample. In the present study, an LC-MS/MS method was developed and fully validated for the quantification of DA, 5-HT and their main metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), in microdialysates from the rat nucleus accumbens shell. To improve the method sensitivity and accuracy, on-line sample enrichment using silica stationary phase was employed, before which any other sample pretreatment was not performed. The validation results proved the method to be selective, sensitive, accurate and precise, with acceptable linearity within calibration ranges. The lower limits of quantification were 0.025, 0.1, 0.5, 25 and 2.5 ng/mL for 5-HT, DA, 5-HIAA, HVA and DOPAC, respectively. This is a powerful analytical method to determine endogenous concentrations of those compounds in microdialysates from the rat nucleus accumbens and will be very useful to further study on the pathophysiological functions of monoamine neurotramsmitters in vivo.  相似文献   

12.
谭炳炎  郑琳  冯翔 《分析测试学报》2006,25(2):90-92,96
建立了高效液相色谱/电化学检测法测定大鼠脑组织和血液中单胺递质及其代谢产物的方法。能同时测定去甲肾上腺素(NE)、肾上腺素(E)、3,4-二羟基苯乙酸(DOPAC)、多巴胺(DA)、高香草酸(HAV)、5-羟色胺(5-HT),并能和内标3,4-二羟卞胺(DHBA)分离良好。本方法快速、简便,回收率为92%-105%,线性范围2.8-680ng/mL,检出限为0.05ng(S/N=3)。本方法已应用在服用中药的大鼠下丘脑组织及血液的测定中,数据显示,本法能满足测定要求。  相似文献   

13.
Herein, we reported the detection of dopamine (DA) based on use of a cathodically pretreated polyaniline (PANI) modified electrode. The PANI electrode presents a remarkable change in their electrocatalytic properties after a simple cathodic pretreatment, which consisted in applying a potential of ?0.7 V for 3 s. While the as‐prepared PANI shows no electrochemical response for DA, the cathodically pretreated PANI presented reversible electrochemical responses with well‐defined anodic and cathodic peaks. The electrochemical behavior of DA at the PANI electrode was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized experimental conditions, the anodic peak currents increased proportionally to the DA concentration, displaying a linear relationship in the concentration range of 0.11 to 1.75×10?4 M with a detection limit of 13.7 μM (3 σ/slope). Recovery studies in pharmaceutical formulations presented values between 98 % and 104 %. The cathodically pretreated PANI electrode was successfully applied for DA detection in real samples of pharmaceutical formulation showing good agreement with spectrometric comparative method. The unexpected easily capability of modulate the electrocatalytic properties of the electropolymerized PANI film using a simple pretreatement was successfully demonstrated. The cathodically pretreatment PANI electrode showed electrochemical responses for DA with excellent selectivity, sensitivity, and high stability.  相似文献   

14.
The present paper provides an overview on currently developed derivatization chemistries and techniques for determination of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in microdialysis samples by microbore liquid chromatography with fluorescence detection. In mild alkaline conditions, 5-hydroxyindoles and catecholamines react with benzylamine (BA), forming highly fluorescent 2-phenyl-4,5-pyrrolobenzoxazoles and 2-phenyl(4,5-dihydropyrrolo) [2,3-f]benzoxazoles, respectively. However, for derivatization of DA a higher fluorescence intensity was achieved for reaction with 1,2-diphenylethylenediamine (DPE) rather than with BA, therefore for simultaneous determination of 5-HT, NE and DA in brain microdialysates, a two-step derivatization with BA followed by DPE was developed. The detection limits for 5-HT, NE and DA were 0.2, 0.08 and 0.13 fmol, respectively, in an injection volume of 20 microL, which corresponds to concentrations of 30, 12 and 19.5 pm, respectively in standard solution prior to derivatization. The experimental data presented demonstrate the ability of the technique to simultaneously monitor neuronally releasable pools of monoamine neurotransmitters in the rat and mouse brains at basal conditions and following pharmacological treatments or physiological stimuli. These techniques play an important role in drug discovery and clinical investigation of psychiatric and neurological diseases such as depression, schizophrenia and Parkinson's disease.  相似文献   

15.
In this study we demonstrated the influence of the cathodic pretreatment of poly(1‐aminoanthracene) (PAA) electropolymerized on a platinum electrode for determination of dopamine (DA). The DA electrochemical response was obtained after a cathodic pretreatment of the PAA electrode which consisted of applying a potential of ?0.7 V (vs. Ag/AgCl) for 3 s before each measurement. The pretreatment of the electrode changed the PAA electrocatalytic properties so that the electrode began to present electrochemical response to DA without interference of ascorbic acid (AA). The anodic peak currents determined by differential pulse voltammetry using pretreated PAA showed a linear dependence on the DA concentration from 0.56 to 100 µM with a detection limit of 0.13 µM and a correlation coefficient of 0.9986. The electrode exhibits a relative standard deviation of 1.2 % for ten successive measurements of a 0.5 mM DA solution. The analysis by scanning electron microscopy and atomic force microscopy show a homogeneous and nanostructured film with globular structures with diameter of about 20 nm. The analytical results obtained for DA determination at a pretreated PAA electrode in pharmaceutical formulation sample were in good agreement with those obtained by a comparative procedure at a 95 % confidence level. PAA electrode after the pretreatment showed electrochemical responses to DA with excellent selectivity, sensitivity, and high stability without interference of AA.  相似文献   

16.
Lu J  Zhang S  Wang A  Zhang W  Jin L 《Talanta》2000,52(5):807-815
The carbon film based ring-disk dual electrodes in the thin-layer radial flow cell are used as the dual electrochemical detector (DECD) for liquid chromatography (LC) to determine the monoamine neurotransmitters. Cyclic voltammetric experiments show there has great difference in the reversibility of the oxidative reactions of dopamine and ascorbate. Therefore the ring-disk dual electrode arrangement in the radial flow cell can effectively remove the interference of ascorbate and determine dopamine in the LC-DECD. In order to obtain the better collection efficiency (CE) and better peak current of analytes in the LC-DECD, several operational parameters have been investigated: flow rate, pH and the working potentials. Under the optimum conditions, the method shows a good stability and reproducibility to determine dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), epinephrine (E) and 3,4-dihydroxyphenylacetic acid (DOPAC). The limits of detection are 0.1 pmol for DA, 0.1 pmol for NE, 0.1 pmol for 5-HT, 1.0 pmol for E and 0.1 pmol for DOPAC. The application of this method, coupled with microdialysis sampling, for the in vivo determination of the monoamine neurotransmitters in the striatum of the rat brain is satisfactory.  相似文献   

17.
制备了蒙脱土修饰碳纤维电极,研究了其对神经递质多巴胺(DA)及5羟色胺(5HT)的富集作用,以及对负电性的代谢产物3,4二羟基苯乙酸(DOPAC)、5羟吲哚乙酸(5HIAA)及脑内大量存在的抗坏血酸(AA)排斥性能.该电极具有很高的灵敏度、分辨率和抗干扰性,对DA的检测下限达16×10-8mol/L,优于传统的Nafion修饰电极,对5HT的检测下限为1×10-7mol/L.在动物活体分析中,使用该电极成功地检测了大鼠双侧颈总动脉结扎再灌损伤时,脑纹状体中神经递质DA浓度的变化.  相似文献   

18.
《Electroanalysis》2004,16(21):1777-1784
The surface of boron‐doped diamond (BDD) electrode is modified by the polymer film for the first time. The cationic polymer film of N,N‐dimethylaniline (DMA) is electrochemically deposited on BDD electrode surface. This polymer (PDMA) film‐coated BDD electrode is used as a sensor which selectively detect dopamine (DA) in the presence of ascorbic acid (AA). This electrode also can detect both DA and its metabolite, 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the presence of AA in the range of the physiological concentrations of these species. Favorable ionic interaction (i.e., electrostatic attraction) between the PDMA film and AA or DOPAC lowers their oxidation potentials and enhances the current response for AA and DOPAC compared to that at the bare electrode. The PDMA film also shows a hydrophobic interaction with DA and DOPAC. In cyclic voltammetric measurements, the PDMA film‐coated electrode can successfully separate the oxidation potentials for AA and DA coexisting in the same solution and the separation is about 200 mV. AA oxidizes at more negative potential than DA. In square‐wave voltammetry, the sensitivity of the PDMA film‐coated BDD electrode for DA in the presence of higher concentration of AA is higher than that of the PDMA film‐coated glassy carbon electrode. The hydrodynamic amperometric experiments confirm that the oxidation of AA is not affected by the oxidized product of DA and vice versa. So, unlike the bare electrode the catalytic oxidation of AA by the oxidized DA is eliminated at the PDMA film‐coated BDD electrode. The sensitivities of the modified electrode for AA, DA and DOPAC, which are present in the same solution with their physiological concentration ratios, are calculated to be 0.070, 0.363 and 0.084 μA μM?1, respectively. The modified electrode exhibits a stable and sensitive response to DA.  相似文献   

19.
Johirul M  Shiddiky A  Kim RE  Shim YB 《Electrophoresis》2005,26(15):3043-3052
A microfluidic chip based on capillary electrophoresis coupled with a cellulose-single-stranded DNA (cellulose-ssDNA) modified electrode was used for the simultaneous analysis of dopamine (DA), norepinephrine (NE), 3,4-dihydroxy-L-phenylalanine (L-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), and ascorbic acid (AA). The modification of the electrode improved the electrophoretic analysis performance by lowering the detection potential and enhancing the signal-to-noise characteristic without surface poisoning of the electrode. The sensitivity of the modified electrode was about 12 times higher than those of the bare ones. The test compounds were separated using a 62 mm long separation channel at the separation field strength of +200 V/cm within 220 s in a 10 mM phosphate buffer (pH 7.4). The most favorable potential for the amperometric detection was 0.7 V (vs. Ag/AgCl). A reproducible response (relative standard deviation of 1.3, 1.3, 2.1, 3.1, 3.4% for DA, NE, L-DOPA, DOPAC, and AA, respectively, for n = 9) for repetitive sample injections reflected the negligible electrode fouling at the cellulose-ssDNA modified electrode. Square-wave voltammetric analyses reflected the sensitivities of the modified electrode for DA, NE, L-DOPA, DOPAC, and AA which were 1.78, 0.82, 0.69, 2.45, and 1.23 nC/microM with detection limits of 0.032, 0.93, 1.13, 0.31, and 0.62 microM, respectively. The applicability of this microsystem to real sample analysis was demonstrated.  相似文献   

20.
An electrochemically functional nanocomposite through the adsorption of methylene blue onto the multi-walled nanotubes (MB-MWNTs) was prepared, and a sensitive voltammetric sensor was fabricated. The modified electrode showed excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) in 0.1 M phosphate solution medium (pH 3.0). Compared to the bare electrode, the MB-MWNTs film-modified electrode not only remarkably enhanced the anodic peak currents of DA and UA, i.e., shifted the anodic peak potential of DA negatively, but also avoided the overlapping of the anodic peaks of DA and UA. The interference of ascorbic acid (AA) was eliminated. Under the optimized conditions, the peak separation between AA and DA and between DA and UA was 219 and 174 mV, respectively. In the presence of 1.0 mM AA and 10.0 μM UA, the anodic peak current was linear to the concentration of DA in the range of 0.4–10.0 μM with a detection limit of 0.2 μM DA. The anodic peak current of UA was linear to the concentration in the range of 2.0–20.0 and 20.0–200.0 μM with a lowest detection limit of 1.0 μM in the presence of 1.0 mM AA and 1.0 μM DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号