首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermochemical properties of uracil and thymine have been evaluated using additional experiments. Standard (p0 = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K for uracil −(298.1 ± 0.6) and for thymine −(337.6 ± 0.9) kJ · mol−1 have been derived from energies of combustion measured by static bomb combustion calorimetry and molar enthalpies of sublimation determined using the transpiration method. The G3 and G4 quantum-chemical methods were used for calculations of theoretical gaseous enthalpies of formation being in very good agreement with the re-measured experimental values.  相似文献   

2.
The standard (po = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at the reference temperature of 298.15 K, of 2-amino-4-methylpyrimidine ((98.1 ± 1.6) kJ · mol−1), 2-amino-4,6-dimethylpyrimidine ((55.9 ± 1.8) kJ · mol−1) and 4-amino-2,6-dimethylpyrimidine ((60.1 ± 1.8) kJ · mol−1) were calculated from the enthalpies of formation, in the crystalline phase, and enthalpies of sublimation, derived, respectively, from static bomb combustion calorimetry and Knudsen effusion technique results. In order to quantify the resonance effects arising from the substitution on the pyrimidine ring, hypothetical isodesmic reactions were used to analyze the experimental gaseous-phase enthalpies of formation. The aromaticity of benzene, pyridine, pyrimidine and the substituted pyrimidines was investigated in terms of magnetic (NICS), geometric (HOMA), electronic (Shannon aromaticity, QTAIMs ring critical point properties and HOMO–LUMO gap), reactive (hardness), vibrational (Kekulé mode) and spectroscopic (UV–Vis) properties.  相似文献   

3.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 3-acetylbenzonitrile and benzoylacetonitrile, in the crystalline phase, were derived from the respective standard massic energies of combustion measured by static bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From the above experimentally determined enthalpic parameters, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, are found to be: (52.4 ± 2.1) kJ · mol−1 and (74.8 ± 2.5) kJ · mol−1 for 3-acetylbenzonitrile and benzoylacetonitrile, respectively.Molecular structures were computed using highly accurate ab initio techniques. Standard molar enthalpies of formation of the experimentally studied compounds were derived using an appropriate set of working reactions. Very good agreement between the calculated and the experimental values was obtained, so the calculations were extended to the estimates of the standard molar enthalpies of formation of 2- and 4-acetylbenzonitriles whose study was not performed experimentally.Our results were further interpreted and rationalized in terms of the enthalpic stability and compared to other relevant disubstituted benzenes.  相似文献   

4.
The energies of combustion for 2-nitrobenzenesulfonamide (cr), 3-nitrobenzenesulfonamide (cr), and 4-nitrobenzenesulfonamide (cr) were determined using a recently described rotating-bomb combustion calorimeter. The condensed phase molar energies of combustion obtained were ?(3479.2 ± 1.0) kJ · mol?1 for 2-nitrobenzenesulfonamide (cr), ?(3454.2 ± 1.1) kJ · mol-1 for 3-nitrobenzenesulfonamide (cr), and ?(3450.1 ± 1.9) kJ · mol-1 for 4-nitrobenzenesulfonamide (cr). From these combustion energy values, the standard molar enthalpies of formation in the condensed phase were obtained as: ?(341.3 ± 1.3) kJ · mol?1, ?(366.3 ± 1.3) kJ · mol?1, and ?(370.4 ± 2.1) kJ · mol?1, respectively. Polyethene bags were used as an auxiliary material in the combustion experiments. The heat capacities and purities of the compounds were determined using a differential scanning calorimeter.  相似文献   

5.
The standard (p° = 0.1 MPa) molar energies of combustion of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde were measured by static bomb combustion calorimetry; the Calvet high-temperature microcalorimetry was used to measure the enthalpies of vaporization of these liquid compounds. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of phase transition, as (106.8 ± 1.1) kJ · mol?1, ?(207.4 ± 1.3) kJ · mol?1, and ?(151.9 ± 1.1) kJ · mol?1, for 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde, respectively.Standard molar enthalpies of formation are discussed in terms of the isomerization ortho meta. Enthalpic increment values of the introduction of the functional groups –CN, –CHO, and –COCH3 were also compared with some other heterocycles; i.e. thiophene and pyridine.  相似文献   

6.
The standard (po = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for the liquids 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine were determined by static bomb combustion calorimetry. The standard molar enthalpies of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. The standard (po = 0.1 MPa) molar enthalpies of formation of the three compounds studied, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization, yielding ((−42.7 ± 1.9), (−18.2 ± 1.8) and (−233.5 ± 1.8)) kJ · mol−1, for 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine, respectively.  相似文献   

7.
The standard (p° = 0.1 MPa) molar enthalpies of combustion of 1-(2H)-phthalazinone and phthalhydrazide, both in the solid phase, were measured at T = 298.15 K by static bomb calorimetry. Further, the standard molar enthalpies of sublimation, at T = 298.15 K, of these two phthalazine derivatives were derived from the Knudsen effusion technique. The combustion calorimetry results together with those obtained from the Knudsen effusion technique, were used to derive the standard molar enthalpies of formation, at T = 298.15 K, in the gaseous phase for 1-(2H)-phthalazinone and phthalhydrazide, respectively as, (79.1 ± 1.8) kJ · mol?1 and ?(107.4 ± 2.4) kJ · mol?1.  相似文献   

8.
The standard (p° = 0.1 MPa) molar enthalpies of combustion and sublimation of 3,4,5-trimethoxyphenol were measured, respectively, by static bomb combustion calorimetry in oxygen atmosphere and by Calvet microcalorimetry. From these measurements, the standard molar enthalpy of formation in both the crystalline and gaseous phase, at T = 298.15 K, were derived: ?(643.4 ± 1.9) kJ · mol?1 and ?(518.1 ± 3.6) kJ · mol?1, respectively. Density functional theory calculations for this compound and respective phenoxyl radical and phenoxide anion were also performed using the B3LYP functional and extended basis sets, which allowed the theoretical estimation of the gaseous phase standard molar enthalpy of formation through the use of isodesmic reactions and the calculation of the homolytic and heterolytic O–H bond dissociation energies. There is good agreement between the calculated and experimental enthalpy of formation. Substituent effects on the homolytic and heterolytic O–H bond dissociation energies have been analysed.  相似文献   

9.
The energetic effects caused by replacing one of the methylene groups in the 9,10-dihydroanthracene by ether or ketone functional groups yielding xanthene and anthrone species, respectively, were determined from direct comparison of the standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of these compounds. The experimental static-bomb combustion calorimetry and Calvet microcalorimetry and the computational G3(MP2)//B3LYP method were used to get the standard molar gas-phase enthalpies of formation of xanthene, (41.8 ± 3.5) kJ · mol?1, and anthrone, (31.4 ± 3.2) kJ · mol?1. The enthalpic increments for the substitution of methylene by ether and ketone in the parent polycyclic compound (9,10-dihydroanthracene) are ?(117.9 ± 5.5) kJ · mol?1 and ?(128.3 ± 5.4) kJ · mol?1, respectively.  相似文献   

10.
The standard molar energies of combustion, at T = 298.15 K, of crystalline 1,4-benzodioxan-2-carboxylic acid and 1,4-benzodioxan-2-hydroxymethyl were measured by static bomb calorimetry in an oxygen atmosphere. The standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry. These values were used to derive the standard molar enthalpies of formation of the compounds in the gas phase at T = 298.15 K: 1,4-benzodioxan-2-carboxylic acid ?(547.7 ± 3.0) kJ · mol?1 and 1,4-benzodioxan-2-hydroxymethyl ?(374.2 ± 2.3) kJ · mol?1.In addition, density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets, 6-311G7 and cc-pVTZ, have been performed for the compounds studied. We have also tested two more accurate computational procedures involving multiple levels of electron structure theory in order to get reliable estimates of the thermochemical parameters of the compounds studied. The agreement between experiment and theory gives confidence to estimate the enthalpies of formation of other 2-R derivatives of 1,4-benzodioxan (R = –CH2COOH, –OH, –COCH3, –CHO, –CH3, –CN, and –NO2).  相似文献   

11.
The standard (p° = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of 5-, 6- and 7-methoxy-α-tetralone were measured by static bomb calorimetry. The values of the standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpies of formation of the compounds, in the gas phase, at T = 298.15 K, have been calculated, 5-methoxy-α-tetralone -(244.8 ± 1.9) kJ · mol?1, 6-methoxy-α-tetralone ?(243.0 ± 2.8) kJ · mol?1 and 7-methoxy-α-tetralone ?(242.3 ± 2.6) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed for the compounds. The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of 8-methoxy-α-tetralone. Similar calculations were done for the 5-, 6-, 7- and 8-methoxy-β-tetralone, for which experimental work was not done.  相似文献   

12.
The standard (p°=0.1MPa) molar enthalpy of formation of 4-methyldibenzothiophene, in the gaseous phase, at T = 298.15 K, was derived from the combination of the values of the standard molar enthalpy of formation, in the crystalline phase, at T = 298.15 K, and the standard molar enthalpy of sublimation, at the same temperature. The standard molar enthalpy of formation in the crystalline phase, determined from the standard massic energy of combustion, in oxygen, is (70.9 ± 4.8) kJ · mol?1 and was measured by rotating-bomb combustion calorimetry. From Calvet microcalorimetry measurements, the standard molar enthalpy of sublimation obtained is (90.3 ± 0.7) kJ · mol?1.  相似文献   

13.
Values of the condensed phase standard (p = 0.1 MPa) molar enthalpy of formation for 2′- and 4′-methylacetophenones were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The values of the standard molar enthalpy of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. Combining these two values, the following enthalpies of formation in the gas phase, at T = 298.15 K, were then derived: 2′-methylacetophenone, –(115.7 ± 2.4) kJ · mol−1, and 4′-methylacetophenone, –(122.6 ± 2.4) kJ · mol−1. Substituent effects are discussed in terms of stability and compared with other similar compounds. The value of the standard molar enthalpy of formation for 3′-methylacetophenone was estimated from isomerization schemes.  相似文献   

14.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

15.
The constant-volume energy of combustion of crystalline anhydrous caffeine (C8H10N4O2) in α (lower temperature steady) crystal form was measured by a bomb combustion calorimeter, the standard molar enthalpy of combustion of caffeine at T = 298.15 K was determined to be −(4255.08 ± 4.30) kJ · mol−1, and the standard molar enthalpy of formation was derived as −(322.15 ± 4.80) kJ · mol−1. The heat capacity of caffeine in the same crystal form was measured in the temperature range from (80 to 387) K by an adiabatic calorimeter. No phase transition or thermal anomaly was observed in the above temperature range. The thermal behavior of the compound was further examined by thermogravimetry (TG), differential thermal analysis (DTA) over the range from (300 to 700) K and by differential scanning calorimetry (DSC) over the range from (300 to 540) K, respectively. From the above thermal analysis a (solid–solid) and a (solid–liquid) phase transition of the compound were found at T = (413.39 and 509.00) K, respectively; and the corresponding molar enthalpies of these transitions were determined to be (3.43 ± 0.02) kJ · mol−1for the (solid–solid) transition, and (19.86 ± 0.03) kJ · mol−1 for the (solid–liquid) transition, respectively.  相似文献   

16.
In this work, we have determined the experimental standard (p°=0.1MPa) molar enthalpies of formation, in the gas phase, of 2,6-dimethyl-4-pyrone ?(261.5 ± 2.6) kJ · mol?1 and 2-ethyl-3-hydroxy-4-pyrone ?(420.9 ± 2.8) kJ · mol?1. These values were obtained by combining the standard molar enthalpy of formation in the condensed phase, derived from combustion experiments in oxygen, at T = 298.15 K, in a static bomb calorimeter, with the standard molar enthalpy of sublimation, at T = 298.15 K, obtained by Calvet microcalorimetry. Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for these two compounds. Good agreement was obtained between the experimental and computational results. Using the same methodology, we calculated the standard molar enthalpy of formation of gaseous 2-methyl-3-hydroxy-4-pyrone.  相似文献   

17.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

18.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two fluorene derivatives: 2-aminofluorene and 2-nitrofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A Knudsen effusion method was used to perform the vapour pressure study of the referred compounds, yielding an accurate determination of the standard molar enthalpies and entropies of sublimation. The enthalpies of sublimation were also determined using Calvet microcalorimetry and the enthalpy and temperature of fusion were derived from DSC experiments. Derived results of standard enthalpy and Gibbs energy of formation in both gaseous and crystalline phases were compared with the ones reported in literature for fluorene. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared to the experimental values.  相似文献   

19.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

20.
The enthalpies of combustion and of sublimation, respectively, of the three isomeric nitrobenzonitriles have been measured: o-, {(−3456.3±2.9), (88.1±1.4)} kJ·mol−1; m-, {(−3442.8±3.3), (92.8±0.3)} kJ·mol−1; p-, {(−3448.2±3.6), (91.1±1.3)} kJ·mol−1. In turn, from these values, the standard molar enthalpies of formation for the condensed and gaseous state, respectively, have been derived: o-, {(130.1±3.1), (218.2±3.4)} kJ·mol−1; m-, {(116.5±3.5), (209.3±3.5)} kJ·mol−1; p-, {(122.0±3.8), (213.1±4.0)} kJ·mol−1. Destabilization energies associated with the presence of the two electron-withdrawing groups have been determined, for o-, m-, and p-nitrobenzonitrile, {(17.6±4.1), (8.7±4.2), and (12.5±4.6)} kJ·mol−1, respectively, and are consistent with those obtained for the corresponding sets of isomeric methyl benzenedicarboxylates, dicyanobenzenes, dinitrobenzenes, and (neutral and ionized) nitrobenzoic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号