首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
An asymptotically correct beam model is obtained for a long, thin-walled, circular tube with circumferentially uniform stiffness (CUS) and made of generally anisotropic materials. By virtue of its special geometry certain small parameters cause unusual non-linear phenomena, such as the Brazier effect, to be exhibited. The model is constructed without ad hoc approximations from 3D elasticity by deriving its strain energy functional in terms of generalized 1D strains corresponding to extension, bending, and torsion. Large displacement and rotation are allowed but strain is assumed to be small. Closed-form expressions are provided for the 3D non-linear warping and stress fields, the 1D non-linear stiffness matrix and the bending moment–curvature relationship. In bending, failure could be caused by limit-moment instability, local buckling or material failure of a ply. A procedure to determine the failure load is provided based on the non-linear response, neglecting micro-mechanical failure modes, post-failure behavior, and hygrothermal effects. Asymptotic considerations lead to the neglect of local shell interlaminar and transverse shear stresses for the thin-walled configuration. Results of the theory are illustrated for a few symmetric, antisymmetric angle-ply and unsymmetric layups and show that some previously published theories are not asymptotically correct.  相似文献   

2.
The tensile behavior of polymer matrix fiber composites has been described in terms of an anisotropic model of finite viscoplasticity. Our constitutive approach is based on the kinematics of the additive form of the deformation rate tensor D generalized by Mandel [Mandel, J., 1971, Plasticité classique et viscoplasticité. Courses and Lectures, No. 97, International Center for Mechanical Sciences/Springer, Udine/Wien-New York] and Dafalias [Dafalias, Y.F., 1985. The plastic spin. ASME J. Appl. Mech. 52, 865–871]. The constitutive laws for Dp and Wp were written in accordance with the material anisotropy, whereas the constitutive law of hypoelasticity has been accordingly written in its objective form. Moreover, a viscoplastic model has been applied to represent the non-linear rate dependence. Experimental results performed in a wide strain rate region and in a wide strain range were simulated in a very accurate way. Additionally, the model was proved to predict creep behavior of the same material type as well.  相似文献   

3.
The aim of the paper is to develop a micro–macro approach for the analysis of the mechanical behavior of composites obtained embedding long fibers of Shape Memory Alloys (SMA) into an elastic matrix. In order to determine the overall constitutive response of the SMA composites, two homogenization techniques are proposed: one is based on the self-consistent method while the other on the analysis of a periodic composite. The overall response of the SMA composites is strongly influenced by the pseudo-elastic and shape memory effects occurring in the SMA material. In particular, it is assumed that the phase transformations in the SMA are governed by the wire temperature and by the average stress tensor acting in the fiber. A possible prestrain of the fibers is taken into account in the model.Numerical applications are developed in order to analyze the thermo-mechanical behavior of the SMA composite. The results obtained by the proposed procedures are compared with the ones determined through a micromechanical analysis of a periodic composite performed using suitable finite elements.Then, in order to study the macromechanical response of structural elements made of SMA composites, a three-dimensional finite element is developed implementing at each Gauss point the overall constitutive laws of the SMA composite obtained by the proposed homogenization procedures. Some numerical applications are developed in order to assess the efficiency of the proposed micro–macro model.  相似文献   

4.
The hardening model proposed by Z. Mróz based on the uniaxial fatigue behavior of many metals is adopted to derive an incremental constitutive equation for general three-dimensional problems. This constitutive law is then employed in the analysis of metal forming problems to assess the influence of loading cycles, of the types involved in standard forming processes, on the ultimate formability of sheet metals. The predicted forming limit curves differ quantitatively from results obtained via an isotropie hardening model and differ qualitatively from those obtained via a kinematic model. Also investigated are the effects of such loading cycles on material response to simple tensile loading, which is often used to characterize a material. Significant differences between the present model and the other two models considered are observed in such characterizers of simple tensile behavior as the stress-strain curve, the anisotropy parameter and the uniform elongation. These differences suggest a rather simple experiment to identify the proper material model to be used in analyses of problems which involve loading cycles. Comparisons with some experimental results reveal that the employment of an anisotropic hardening model, such as the generalized Mróz model derived herein, is indeed crucial in accurately predicting material response to complicated loading histories.  相似文献   

5.
A numerical model is presented to enable performing non-linear dynamic analysis of slender masonry structures and elements, such as towers and columns or masonry walls in out-of-plane flexure. Such structures are represented via a continuous one-dimensional model. The main mechanical characteristics of the material in all sections along the height of such structures are taken into account by means of a non-linear elastic constitutive law formulated in terms of generalized stress and strain, under the assumption that the material has no resistance to tension and limited compressive strength. The relations defined herein for the general case of hollow rectangular cross-sections are also aimed at enabling study of towers, bell-towers and similar slender structures.  相似文献   

6.
曹明月  张启  吴建国  葛敬冉  梁军 《力学学报》2020,52(4):1095-1105
C/SiC复合材料具有高比强度、高比模量和优良的热稳定性能等一系列优点, 广泛应用于航空航天领域中. 裂纹扩展进而引起的脆性断裂是其主要失效形式之一, 因而材料的断裂性能分析对材料的结构设计和应用有重要的指导意义. 本文开展了缝合式C/SiC复合材料简单力学试验和断裂试验, 研究了材料在不同载荷下的力学响应及断裂特征. 基于缝合式C/SiC复合材料简单力学试验, 建立了材料宏观非线性损伤本构方程, 并模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 本构方程采用简单函数描述了材料在复杂应力状态下的非线性应力-应变曲线, 并考虑了反向加载过程中造成的裂纹闭合. 基于商业有限元软件ABAQUS, 通过编写UMAT子程序实现非线性损伤本构方程, 采用单个单元验证了建立的本构方程的有效性. 在此基础上, 采用线弹性损伤本构和非线性损伤本构分别模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 采用非线性损伤本构方程模拟的力-位移曲线结果与试验结果更为吻合, 非线性损伤本构预测的失效载荷与试验失效载荷更为接近, 验证了所建立的非线性损伤本构方程的准确性, 为C/SiC复合材料断裂行为的研究提供了借鉴, 为缝合式C/SiC复合材料结构的设计和应用提供了理论基础.   相似文献   

7.
C/SiC复合材料具有高比强度、高比模量和优良的热稳定性能等一系列优点, 广泛应用于航空航天领域中. 裂纹扩展进而引起的脆性断裂是其主要失效形式之一, 因而材料的断裂性能分析对材料的结构设计和应用有重要的指导意义. 本文开展了缝合式C/SiC复合材料简单力学试验和断裂试验, 研究了材料在不同载荷下的力学响应及断裂特征. 基于缝合式C/SiC复合材料简单力学试验, 建立了材料宏观非线性损伤本构方程, 并模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 本构方程采用简单函数描述了材料在复杂应力状态下的非线性应力-应变曲线, 并考虑了反向加载过程中造成的裂纹闭合. 基于商业有限元软件ABAQUS, 通过编写UMAT子程序实现非线性损伤本构方程, 采用单个单元验证了建立的本构方程的有效性. 在此基础上, 采用线弹性损伤本构和非线性损伤本构分别模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 采用非线性损伤本构方程模拟的力-位移曲线结果与试验结果更为吻合, 非线性损伤本构预测的失效载荷与试验失效载荷更为接近, 验证了所建立的非线性损伤本构方程的准确性, 为C/SiC复合材料断裂行为的研究提供了借鉴, 为缝合式C/SiC复合材料结构的设计和应用提供了理论基础.  相似文献   

8.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

9.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

10.
The multi-fracture response of cross-ply ceramic composites   总被引:1,自引:0,他引:1  
The mechanical response of cross-ply SiC/CAS ceramic matrix composites was investigated experimentally and analytically. The experiments consisted of recording stress-strain behavior, counting matrix cracks and measuring the interlaminar shearing strength. The analysis employed an extended shear-lag model which incorporated non-linear behavior of the 0° plies and interlaminar slip between the 0 and 90° plies. The evolution of the multi-cracking process was determined by means of fracture criterion, leading to the prediction of the overall stress-strain response of the cross-ply laminate.  相似文献   

11.
This paper presents a composites-based hyperelastic constitutive model for soft tissue. Well organized soft tissue is treated as a composite in which the matrix material is embedded with a single family of aligned fibers. The fiber is modeled as a generalized neo-Hookean material in which the stiffness depends on fiber stretch. The deformation gradient is decomposed multiplicatively into two parts: a uniaxial deformation along the fiber direction and a subsequent shear deformation. This permits the fiber-matrix interaction caused by inhomogeneous deformation to be estimated by using effective properties from conventional composites theory based on small strain linear elasticity and suitably generalized to the present large deformation case. A transversely isotropic hyperelastic model is proposed to describe the mechanical behavior of fiber-reinforced soft tissue. This model is then applied to the human annulus fibrosus. Because of the layered anatomical structure of the annulus fibrosus, an orthotropic hyperelastic model of the annulus fibrosus is developed. Simulations show that the model reproduces the stress-strain response of the human annulus fibrosus accurately. We also show that the expression for the fiber-matrix shear interaction energy used in a previous phenomenological model is compatible with that derived in the present paper.  相似文献   

12.
In this paper, a three-invariant cap model is developed for the isotropic–kinematic hardening and associated plasticity of granular materials. The model is based on the concepts of elasticity and plasticity theories together with an associated flow rule and a work hardening law for plastic deformations of granulars. The hardening rule is defined by its decomposition into the isotropic and kinematic material functions. The constitutive elasto-plastic matrix and its components are derived by using the definition of yield surface, material functions and non-linear elastic behavior, as function of hardening parameters. The model assessment and procedure for determination of material parameters are described. Finally, the applicability of proposed plasticity model is demonstrated in numerical simulation of several triaxial and confining pressure tests on different granular materials, including: wheat, rape, synthetic granulate and sand.  相似文献   

13.
Nonlinear thermoelastic–viscoplastic constitutive equations for large deformations with isotropic and directional hardening, are incorporated into a micromechanical finite strain analysis. As a result of this analysis, which is based on the homogenization technique for periodic microstructures, a global thermoinelastic constitutive law is established that governs the overall response of multiphase materials under finite deformations. This constitutive law is expressed in terms of the instantaneous effective mechanical and thermal stress tangent tensors together with the instantaneous global inelastic stress tensor that represents the viscoplastic effects. Results for a thermoinelastic matrix reinforced by a hyperelastic compressible material are given that illustrate the response of fibrous and particulate composites to various types of loading.  相似文献   

14.
This paper presents constitutive models for the anisotropic, finite-deformation viscoelastic behavior of soft fiber-reinforced composites. An essential assumption of the models is that both the fiber reinforcements and matrix can exhibit distinct time-dependent behavior. As such, the constitutive formulation attributes a different viscous stretch measure and free energy density to the matrix and fiber phases. Separate flow rules are specified for the matrix and the individual fiber families. The flow rules for the fiber families then are combined to give an anisotropic flow rule for the fiber phase. This is in contrast to many current inelastic models for soft fiber-reinforced composites which specify evolution equations directly at the composite level. The approach presented here allows key model parameters of the composite to be related to the properties of the matrix and fiber constituents and to the fiber arrangement. An efficient algorithm is developed for the implementation of the constitutive models in a finite-element framework, and examples are presented examining the effects of the viscoelastic behavior of the matrix and fiber phases on the time-dependent response of the composite.  相似文献   

15.
In this work, two methodologies for the analysis of unidirectional fiber reinforced composite materials are presented.The first methodology used is a generalized anisotropic large strains elasto-plastic constitutive model for the analysis of multiphase materials. It is based on the mixing theory of basic substance. It is the manager of the several constitutive laws of the different compounds and it allows to consider the interaction between the compounds of the composite materials. In fiber reinforced composite materials, the constitutive behavior of the matrix is isotropic, whereas the fiber is considered orthotropic. So, one of the constitutive model used in the mixing theory needs to consider this characteristic. The non-linear anisotropic theory showed in this work is a generalization of the classic isotropic plasticity theory (A Continuum Constitutive Model to Simulate the Mechanical Behavior of Composite Materials, PhD Thesis, Universidad Politécnica de Cataluña, 2000). It is based in a one-to-one transformation of the stress and strain spaces by means of a four rank tensor.The second methodology used is based on the homogenization theory. This theory divided the composite material problem into two scales: macroscopic and microscopic scale. In macroscopic level the composite material is assuming as a homogeneous material, whereas in microscopic level a unit volume called cell represents the composite (Tratamiento Numérico de Materiales Compuestos Mediante la teorı́ de Homogeneización, PhD Thesis, Universidad Politécnica, de Cataluña 2001). This formulation presents a new viewpoint of the homogenization theory in which can be found the equations that relate both scales. The solution is obtained using a coupled parallel code based on the finite elements method for each scale problem.  相似文献   

16.
Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress–strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic–plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic–plastic stress–strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than ?1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic–plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic–plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between microstructure and macroscopic behavior, this model should be extendable to other electrospun systems and other two dimensional random fibrous networks.  相似文献   

17.
Based on the micromechanics-based constitutive model, derived in our preceding work [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. Journal of Engineering Mechanics-ASCE, in press, doi:10.1061/(ASCE)EM.1943.7889.0000039.], incorporating a multi-level damage model and a continuum damage model, the overall elastic behavior and damage evolution of laminated composite structures are studied in detail. The constitutive model is implemented into the finite element program ABAQUS using a user-subroutine UMAT to solve boundary value problems of the composite structures. The validity of the implemented constitutive model is assured by comparing the predicted stress–strain curves with experimental data available in literature under uniaxial tension with various fiber orientations. The results show that the proposed micromechanics-based constitutive model accurately predict the overall elastic-damage behavior of laminated composite structures having different material compositions, thicknesses and boundary conditions.  相似文献   

18.
Deformation and strength behavior of geomaterials in the pre- and post-failure regimes are of significant interest in various geomechanics applications. To address the need for development of a realistic constitutive framework, which allows for an accurate simulation of pre-failure response as well as an objective and meaningful post-failure response, a strain gradient plasticity model is formulated by incorporating the spatial gradients of elastic strain in the evolution of stress and gradients of plastic strain in the evolution of the internal variables. In turn, gradients of only kinematic variables are included in the constitutive equations. The resulting constitutive equations along with the balance of linear momentum for the continuum are cast as a coupled system of equations, with displacements and plastic multiplier appearing as the primary unknowns in the final governing integral equations. To avoid singular stress fields along element boundaries, a finite element discretization of the governing equations would require C2 continuous displacements and C1 continuous plastic multiplier, which is undesirable from a numerical implementation point of view. This issue is naturally resolved when a meshfree discretization is used. Hence the developed model is formulated within the framework of a meshfree environment. The new constitutive model allows an analysis of grain size effects on strength and dilatancy of rocks. The role and effectiveness of the new gradient terms on regularizing the underlying boundary value problems of geomechanics beyond the initiation of strain localization will be assessed in a future paper.  相似文献   

19.
帘线/橡胶复合材料广泛应用于轮胎等重要工程领域,为了描述其在服役条件下的大变形、非线性、各向异性和高应变率等材料力学行为,基于纤维增强复合材料连续介质力学理论,提出了一种考虑应变率效应的帘线/橡胶复合材料各向异性黏-超弹性本构模型. 该模型中单位体积的应变能被解耦为便于参数识别的基体等容变形能、帘线拉伸变形能、剪切应变能和黏性应变能四部分. 给出了模型参数的确定方法,并通过拟合文献中单轴拉伸、偏轴拉伸实验数据,得到了模型参数. 利用该模型预测了不同加载和变形条件下的力学行为,并将预测结果与实验结果对比分析. 结果表明, 考虑黏性模型和不考虑黏性模型对不同应变率变形条件下的预测结果相差很大,且考虑黏性模型的预测结果与实验结果吻合很好. 因此,与不考虑黏性模型相比,所提出的各向异性黏-超弹性本构模型能更好地表征帘线/橡胶复合材料在大变形、高应变率条件下的力学特性.   相似文献   

20.
A wide range of non-linear effects are observed in piezoceramic materials. For small stresses and weak electric fields, piezoceramics are usually described by linearized constitutive equations around an operating point. However, typical non-linear vibration behavior is observed at weak electric fields near resonance frequency excitations of the piezoceramics. This non-linear behavior is observed in terms of a softening behavior and the decrease of normalized amplitude response with increase in excitation voltage. In this paper the authors have attempted to model this behavior using higher order cubic conservative and non-conservative terms in the constitutive equations. Two-dimensional kinematic relations are assumed, which satisfy the considered reduced set of constitutive relations. Hamilton's principle for the piezoelectric material is applied to obtain the non-linear equation of motion of the piezoceramic rectangular parallelepiped specimen, and the Ritz method is used to discretize it. The resulting equation of motion is solved using a perturbation technique. Linear and non-linear parameters for the model are identified. The results from the theoretical model and the experiments are compared. The non-linear effects described in this paper may have strong influence on the design of the devices, e.g. ultrasonic motors, which utilize the piezoceramics near the resonance frequency excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号