首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider the stability of a porous medium submitted to a steady-state flow with free-boundary. Assuming some hypotheses, it is possible to implement the kinematic method by using an approximate pressure field bounding the true pressure field from below. We are interested in finding such approximate pressure fields and in proving that they bound the true pressure field from below without knowing the true pressure field. We use fields which are solutions of a problem with relaxed conditions with regard to the real problem. Under a uniqueness condition of the solution of a weak formulation of the problem, such fields are lower bounds for the true pressure field. Finally, we give the example of a vertical dam. To cite this article: A. Corfdir, C. R. Mecanique 334 (2006).  相似文献   

2.
We attempt here to use the kinematic method of yield design in the case of a porous medium subjected to flow (with or without free surface), without looking for the exact solution of the pressure field. The method proposed here is based on the use of approximate pressure fields. In this paper, we show how, under different conditions concerning the yield criterion and the velocity field, the use of such approximate fields allows one to obtain a necessary condition for stability without having to find the real pressure field. To cite this article: A. Corfdir, C. R. Mecanique 334 (2006).  相似文献   

3.
We consider how the Kelvin–Helmholtz instability is affected by an external hyperbolic strain flow. The basic flow being unsteady, the inviscid evolution of perturbations is studied within the framework of a non-normal analysis in which the maximum amplification is computed for any given time. A positive or negative stretching is shown to enhance or reduce, respectively, the instability even for weak stretching rates. To cite this article: T. Gomez, M. Rossi, C. R. Mecanique 331 (2003).  相似文献   

4.
The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0?Pr?100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635–642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. To cite this article: M. Nagata, S. Generalis, C. R. Mecanique 332 (2004).  相似文献   

5.
Among various correlation techniques to find the displacement field of a volume imaged by X-ray tomography at several deformation states, a new approach is proposed where the displacement is measured down to the voxel scale and determined from a mechanically regularized system using the equilibrium gap method, and an additional boundary regularization. It is shown that even if the underlying material behavior is not very well known, this approach leads to extremely small correlation residuals. An excellent stability of the estimated displacement field for noisy (reconstructed) volumes is also observed.  相似文献   

6.
We consider the plane problem of the equilibrium of a capillary surface. We study the stability of a two-dimensional surface with respect to plane and spatial disturbances. We give data which can be used for deciding the question of the stability of any symmetric equilibrium surface in a field of gravitational forces and in conditions of weightlessness. We solve the problems of the stability of a liquid in a rectangular and a sectorial channel and also the problem of the separation of a plane drop from a horizontal wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 57–68, January–February, 1976.The authors are grateful to A. D. Myshkis and A. D. Tyuptsov for their evaluation and their useful comments.  相似文献   

7.
This study presents an analytical solution to elastic field in a roller-guided panel of symmetric cross-ply laminated composite material. The mixed boundary value two-dimensional plane stress elasticity problem is formulated in terms of a single displacement potential function. This reduces the problem to the solution of a single fourth order partial differential equation of equilibrium as the other equilibrium equation is satisfied automatically. The solution is obtained in terms of an infinite Fourier series. To present some numerical results, a panel of glass/epoxy laminated composite is considered and different components of stress and displacement at different sections of the panel are presented graphically. To justify the present analytical solution, it is compared with the finite element solution obtained by using the commercial software ANSYS. It is found that the two solutions agree well with each other. This ensures that the formulation developed in this study based on the displacement potential approach can be used to obtain analytical solution of an elastic field in structural elements of laminated composite under any mode of boundary conditions prescribed in terms of either stress, displacement or any combination of these.  相似文献   

8.
We study the flow of a viscous incompressible fluid through a long and narrow elastic tube whose walls are modeled by the Navier equations for a curved, linearly elastic membrane. The flow is governed by a given small time dependent pressure drop between the inlet and the outlet boundary, giving rise to creeping flow modeled by the Stokes equations. By employing asymptotic analysis in thin, elastic, domains we obtain the reduced equations which correspond to a Biot type viscoelastic equation for the effective pressure and the effective displacement. The approximation is rigorously justified by obtaining the error estimates for the velocity, pressure and displacement. Applications of the model problem include blood flow in small arteries. We recover the well-known Law of Laplace and provide a new, improved model when shear modulus of the vessel wall is not negligible. To cite this article: S. ?ani?, A. Mikeli?, C. R. Mecanique 330 (2002) 661–666.  相似文献   

9.
《Comptes Rendus Mecanique》2007,335(5-6):287-294
A three-dimensional finite element model for the numerical simulation of metal displacement and heat transfer in the squeeze casting process has been developed. In the model, a numerical approach, termed as ‘Quasi-static Eulerian’, is proposed, in which the dynamic metal displacement process is divided into a certain number of sub-cycles. In each of the sub-cycles, the dieset configuration is assumed to be static and a fixed finite element mesh is created, thus making the Eulerian approach applicable to the solution of metal flow and heat transfer. Mesh-to-mesh data mapping is carried out for any two adjacent sub-cycles to ensure that the physical continuity of the real metal displacement process is represented. A numerical example is presented, which shows the application of the present model to geometrically complex three-dimensional squeeze casting problems. To cite this article: R.W. Lewis et al., C. R. Mecanique 335 (2007).  相似文献   

10.
We propose a linear stability analysis of unsteady viscous flow. We apply this method to an oscillatory pipe flow with an axisymetric 2D perturbation which has received considerable attention. The numerical results are relevant. To cite this article: M. Siouffi et al., C. R. Mecanique 330 (2002) 641–645.  相似文献   

11.
A numerical study based on the linear stability analysis is undertaken, in order to determine the influence of a horizontal magnetic field on the marginal modes occuring in a fluid layer subjected to a horizontal temperature gradient. A particular interest is devoted to the influence of the magnetic field orientation on both nature and critical values of the unstable modes. Calculations show, that when it is subjected to such a magnetic field, this type of flow, known as Hadley flow, can present oblique waves, hitherto non-existent when no magnetic field is applied and even when a vertical, a transverse or a longitudinal magnetic field is imposed. A new asymptotic behavior is also observed for the stabilizing effects. To cite this article: S. Kaddeche et al., C. R. Mecanique 331 (2003).  相似文献   

12.
轴对称横观各向同性层状弹性半空间问题受力分析   总被引:6,自引:0,他引:6  
本文从柱坐标系弹性力学基本方程出发,将位移场和应力场在径向进行Hankel变换,利用常微分主程求解原理,直接得出在轴对称荷载作用下横观各向同性半无限弹性空间的位移场,利用此结果推导出单层元的刚度矩阵。  相似文献   

13.
The stability of a free shear layer, with one-directional velocity field, is addressed. The studied configuration is a special case among the quasi-two-dimensional motions, induced in an electro-conducting and incompressible fluid by a strong magnetic field, superimposed to electric current. The limit of unconditional stability of the shear flow is computed. When the electric current is under the threshold, every deviation from the basic state is monotonically damped. The result holds without any restriction, connected with the size of the perturbations. Patterns set on just above the unconditional stability limit, in the form of small vortices, on the slow side of the shear layer.  相似文献   

14.
We investigate exact solutions of the Navier–Stokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restrictions on the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane, computing some of their global properties, and discussing their stability.  相似文献   

15.
This paper describes the unsteady convective flow of a supercritical fluid in the Rayleigh–Bénard configuration. Two-dimensional earlier studies reported fast temperature equilibrium due to the piston effect and the development of a convective instability when the local Rayleigh number exceeds a critical value. In the present work, a high order 3D finite volume method has been developed and optimized, and to our knowledge, we show for the first time a three-dimensional convective instability in a supercritical fluid. Inspecting the time-evolution of temperature field patterns, we exhibit corner effects and a three-dimensional behavior of the flow. To cite this article: G. Accary et al., C. R. Mecanique 332 (2004).  相似文献   

16.
Spatial resolution of the Stereo PIV technique   总被引:1,自引:0,他引:1  
A theoretical analysis of the spatial resolution in terms of modulation transfer function of the Stereo PIV technique with and without the correction of the misalignment error is performed, and the results show that some wavelengths of the flow field can be significantly dephased and modulated. A performance assessment has been conducted with both synthetic and real images and shows a good agreement with the theoretical analysis. The reconstruction of the three-dimensional displacement field is achieved using both the methods proposed by Soloff et al. (Meas Sci Technol 8:1441–1454, 1997) and by Willert (Meas Sci Technol 8:1465–1479, 1997).
R. GiordanoEmail: Email:
  相似文献   

17.
《力学快报》2020,10(1):46-56
This research, for the first time, predicts theoretically static stability response of a curved carbon nanotube(CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy.The elastoplastic stress-strain is concerned with Ramberg–Osgood law on the basis of deformation and flow theories of plasticity. To seize the nano-mechanical behavior of the CCNT, the nonlocal strain gradient elasticity theory is taken into account. The obtained differential equations are solved using the Rayleigh–Ritz method based on a new admissible shape function which is able to analyze stability problems. To authorize the solution, some comparisons are illustrated which show a very good agreement with the published works. Conclusively, the best findings confirm that a plastic analysis is crucial in predicting the mechanical strength of CCNTs.  相似文献   

18.
A concept for dynamic mixture formation investigations of fuel/air mixtures is presented which can equally be applied to several other laser induced fluorescence (LIF) applications. Double-pulse LIF imaging was used to gain insight into dynamic mixture formation processes. The setup consists of a modified standard PIV setup. The "fuel/air ratio measurement by laser induced fluorescence (FARLIF)" approach is used for a quantification of the LIF images in order to obtain pairs of 2D fuel/air ratio maps. Two different evaluation concepts for LIF double pulse images are discussed. The first is based on the calculation of the temporal derivative field of the fuel/air ratio distribution. The result gives insight into the dynamic mixing process, showing where and how the mixture is changing locally. The second concept uses optical flow methods in order to estimate the motion of fluorescence (i.e., mixture) structures to gain insight into the dynamics, showing the distortion and the motion of the inhomogeneous mixture field. For this "fluorescence motion analysis" (FMA) two different evaluation approaches—the "variational gradient based approach" and the "variational cross correlation based approach"—are presented. For the validation of both, synthetic LIF image pairs with predefined motion fields were generated. Both methods were applied and the results compared with the known original motion field. This validation shows that FMA yields reliable results even for image pairs with low signal/noise ratio. Here, the "variational gradient based approach" turned out to be the better choice so far. Finally, the experimental combination of double-pulse FARLIF imaging with FMA and simultaneous PIV measurement is demonstrated. The comparison of the FMA motion field and the flow velocity field captured by PIV shows that both results basically reflect complementary information of the flow field. It is shown that the motion field of the fluorescence structures does not (necessarily) need to represent the actual flow velocity and that the flow velocity field alone can not illustrate the structure motion in any case. Therefore, the simultaneous measurement of both gives the deepest insight into the dynamic mixture formation process. The examined concepts and evaluation approaches of this paper can easily be adapted to various other planar LIF methods (with the LIF signal representing, e.g., species concentration, temperature, density etc.) broadening the insight for a wide range of different dynamic processes.
J. Scholz (Corresponding author)Email: Email:
V. BeushausenEmail:
  相似文献   

19.
田中旭  唐立民 《力学季刊》1999,20(2):118-123
本文从基本的平衡方程出发,导出了含边界条件的弹性力学差分方程;给出了平面问题,梁弯曲问题,薄板弯曲问题的具体形式和算例。这种方法适用各种边界和荷载情况,而且放松了对位移连续性的要求。  相似文献   

20.
Measurement of the gradient field of a turbulent free surface   总被引:1,自引:1,他引:0  
We study the free surface above a turbulent channel flow. We describe a laser scanning technique that can be used to measure the space–time turbulent surface gradient field along a line. A harmonically swiveling laser beam is focused on the surface and its angle of refraction is measured using a position sensing device. The registered signals can be converted easily to the desired gradient field, and spectra and correlations can be measured. Examples of measured spectra and correlation functions of the surface above a turbulent channel flow (Reynolds number R λ ≈ 250) demonstrate the viability of the technique. We further assess the validity of Taylor’s frozen turbulence hypothesis that implies that time-dependent signals measured along a line that is oriented perpendicularly to the mean channel velocity can be interpreted as 2D measurements of the surface slope. While Taylor’s hypothesis works for a turbulent velocity field, it does not work for its free surface.
Willem van de WaterEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号