首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conducto‐convective heat loss from a viscoelastic liquid, in the core of a double‐pipe heat exchanger arrangement, to a cooler Newtonian fluid flowing in the outer annulus is investigated with direct numerical simulations. A numerical algorithm based on the finite difference method is implemented in time and space with the Giesekus constitutive model for the viscoelastic liquids. The flow of both the annulus and core‐fluids is considered to be Poiseuille flow, driven by respective pressure gradients. In general, the results show that a viscoelastic core‐fluid leads to slightly lower (albeit comparable) attainable temperatures in the core‐fluid stream as compared with a corresponding Newtonian fluid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

3.
In this paper, a numerical solution for Saffman–Taylor instability of immiscible nonlinear viscoelastic-Newtonian displacement in a Hele–Shaw cell is presented. Here, a nonlinear viscoelastic fluid pushes a Newtonian fluid and the volume of fluid method is applied to predict the formation of two phases. The Giesekus model is considered as the constitutive equation to describe the nonlinear viscoelastic behavior. The simulation is performed by a parallelized finite volume method (FVM) using second order in both the spatial and the temporal discretization. The effect of rheological properties and surface tension on the immiscible Saffman–Taylor instability are studied in detail. The destabilizing effect of shear-thinning behavior of nonlinear viscoelastic fluid on the instability is studied by changing the mobility factor of Giesekus model. Results indicate that the fluid elasticity and capillary number decrease the intensity of Saffman–Taylor instability.  相似文献   

4.
In this paper, three-dimensional viscoelastic Taylor-Couette instability between concentric rotating cylinders is studied numerically. The aim is to investigate and provide additional insight about the formation of time-dependent secondary flows in viscoelastic fluids between rotating cylinders. Here, the Giesekus model is used as the constitutive equation. The governing equations are solved using the finite volume method (FVM) and the PISO algorithm is employed for pressure correction. The effects of elasticity number, viscosity ratio, and mobility factor on various instability modes (especially high order ones) are investigated numerically and the origin of Taylor-Couette instability in Giesekus fluids is studied using the order of magnitude technique. The created instability is simulated for large values of fluid elasticity and high orders of nonlinearity. Also, the effect of elastic properties of fluid on the time-dependent secondary flows such as wave family and traveling wave and also on the critical conditions are studied in detail.  相似文献   

5.
This paper reports numerical simulations of selective withdrawal of Newtonian and polymeric liquids, and complements the experimental study reported in the accompanying paper (Zhou and Feng [2]). We use finite elements to solve the Navier–Stokes and constitutive equations in the liquid on an adaptively refined unstructured grid, with an arbitrary Lagrangian–Eulerian scheme to track its free surface. The rheology of the viscoelastic liquids are modeled by the Oldroyd-B and Giesekus equations, and the physical and geometric parameters are matched with those in the experiments. The computed interfacial deformation is in general agreement with the experimental observations. In particular, the critical condition for interfacial rupture is predicted to quantitative accuracy. Furthermore, we combine the numerical and experimental data to explore the potential of selective withdrawal as an extensional rheometer. For Newtonian fluids, the measured steady elongational viscosity is within 47% of the actual value, apparently with better accuracy than other methods applicable to low-viscosity liquids. For polymer solutions, an estimated maximum error of 300% compares favorably with prior measurements.  相似文献   

6.
We implement a volume-of-fluid algorithm with a parabolic re-construction of the interface for the calculation of the surface tension force (VOF-PROST). This achieves higher accuracy for drop deformation simulations in comparison with existing VOF methods based on a piecewise linear interface re-construction. The algorithm is formulated for the Giesekus constitutive law. The evolution of a drop suspended in a second liquid and undergoing simple shear is simulated. Numerical results are first checked against two cases in the literature: the small deformation theory for second-order liquids, and an Oldroyd-B extensional flow simulation. We then address the experimental data of Guido et al. (2003) for a Newtonian drop in a viscoelastic matrix liquid. The data deviate from existing theories as the capillary number increases, and reasons for this are explored here with the Oldroyd-B and Giesekus models.  相似文献   

7.
微生物是自然生态系统的重要组成部分,掌握微生物在复杂流体中的运动特性可以为微型器件的设计制造提供理论指导.壁面效应是微生物游动研究中的重要问题之一,已有研究表明微生物在壁面附近存在复杂的行为特征.然而已有研究大多集中于微生物在牛顿流体中的游动模拟,仅有少数涉及黏弹性流体等非牛顿流体.本文采用直接力虚拟区域法与乔列斯基分解相结合的数值方法,引入Squirmer微生物游动模型,研究了微生物在黏弹性流体中的游动问题.首先给出求解黏弹性流体本构方程的数值格式;并将该方法应用于研究微生物游动中的壁面效应.研究结果表明,游动方向是影响微生物颗粒壁面效应的重要因素.流体弹性应力会对微生物产生一个反向转矩,影响微生物的游动方向,从而阻碍微生物逃离壁面.微生物颗粒在黏弹性流体中与壁面作用时间较长,几乎达到牛顿流体的两倍以上.  相似文献   

8.
主要研究俯仰激励下液体大幅晃动问题,将ALE(arbitrary Lagrange-Euler)运动学描述引入到Navier-Stokes方程中,推导了俯仰激励下液体大幅晃动数值模拟计算公式,并利用Galerkin加权余量法推导了有限元数值离散方程,采用ALE有限元方法对方形贮腔中的液体大幅晃动进行了数值模拟计算,对结果进行了比较分析,揭示了俯仰激励下液体大幅晃动问题的非线性现象。  相似文献   

9.
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra integral over the domain of the drop. The implementation of the boundary conditions is facilitated by rewriting the domain integral by means of the Gauss divergence theorem. To apply the divergence theorem smoothness assumptions are made concerning the non-Newtonian stress tensor. The correctness of these assumptions in actual simulations is checked with a numerical validation procedure. The method appears mathematically correct and the numerical algorithm is second order accurate. Besides this validation we present simulation results for a Newtonian drop and a drop consisting of an Oldroyd-B fluid. The results for Newtonian and non-Newtonian drops in two dimensions indicate that the steady state deformation is quite independent of the drop-fluid. The deformation process, however, appears to be strongly dependent on the drop-fluid. For the non-Newtonian drop a mechanical model is developed to describe the time-dependent deformation of the cylinder for small capillary numbers.  相似文献   

10.
In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features of the phenomenon, such as instantaneous drop length, limiting length of a drop at breakup, minimum drop radius and the volume of the primary drop is determined for a range of the parameter space spanned by the appropriate dimensionless groups. The results reveal that enhancing the mobility factor, Wiessenberg number, and viscosity ratio causes a noticeable decrease in limiting drop length and a small decrease on the primary drop volume. Also, the increasing of gravitational bond number and capillary number causes the limiting drop length increases while the primary drop volume is reduced.  相似文献   

11.
In a recent paper, Joseph et al. showed that, for a number of viscoelastic fluids, one can observe the phenomenon of delayed die swell beyond a critical extrusion velocity, or beyond a critical value of the viscoelastic Mach number. Giesekus had also observed that delayed die swell is a critical phenomenon.In the present paper, we find a set of material and flow parameters under which it is possible to simulate delayed die swell. For the viscoelastic flow calculation, we use the finite element algorithm with sub-elements for the stresses and streamline upwinding in the discretized constitutive equations. For the free surface, we use an implicit technique which allows us to implement Newton's method for solving the non-linear system of equations. The fluid is Oldroyd-B which, in the present problem, is a singular perturbation of the Maxwell fluid. The results show very little sensitivity to the size of the retardation time. We also show delayed die swell for a Giesekus fluid.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

12.
俯仰激励下三维液体大幅晃动问题研究   总被引:13,自引:2,他引:11  
岳宝增 《力学学报》2005,37(2):199-203
主要研究俯仰激励下三维液体大幅晃动问题,将任意Lagrange-Euler法 (arbitrary Lagrange-Euler, ALE)运动学描述引入到Navier-Stokes方程中,推导了俯仰激励下液体大幅晃 动数值模拟计算公式,并利用Galerkin加权余量法推导了有限元数值离散方程和分步有限 元计算格式,采用ALE分步有限元方法对圆筒形贮腔中的液体大幅晃动进行了数值模拟计 算. 得到了波高、晃动力及晃动力矩等晃动特性的时间变化历程,并对结果进行了分析,揭 示了俯仰激励下三维液体大幅晃动问题的非线性现象.  相似文献   

13.
Recent two-dimensional numerical simulations and experiments have shown that, when a drop undergoes shear in a viscoelastic matrix liquid, the deformation can undergo an overshoot. I implement a volume-of-fluid algorithm with a paraboloid reconstruction of the interface for the calculation of the surface tension force for three-dimensional direct numerical simulations for a Newtonian drop in an Oldroyd-B liquid near criticalities. Weissenberg numbers up to 1 at viscosity ratio 1 and retardation parameter 0.5 are examined. Critical capillary numbers rise with the Weissenberg number. Just below criticality, drop deformation begins to undergo an overshoot when the Weissenberg number is sufficiently high. The overshoot becomes more pronounced, and at higher matrix Weissenberg numbers, such as 0.8, drop deformation undergoes novel oscillations before settling to a stationary shape. Breakup simulations are also described.  相似文献   

14.
Two-phase flows driven by the interfacial dynamics are studied by tracking implicitly interfaces in the framework of the Cahn-Hilliard theory. The fluid dynamics is described by the Stokes equations with an additional source term in the momentum equation taking into account the capillary forces. A discontinuous Galerkin finite element method is used to solve the coupled Stokes/Cahn-Hilliard equations. The Cahn-Hilliard equation is treated as a system of two coupled equations corresponding to the advection-diffusion equation for the phase field and a nonlinear elliptic equation for the chemical potential. First, the variational formulation of the Cahn-Hilliard equation is presented. A numerical test is achieved showing the optimal order in error bounds. Second, the variational formulation in discontinuous Galerkin finite element approach of the Stokes equations is recalled, in which the same space of approximation is used for the velocity and the pressure with an adequate stabilization technique. The rates of convergence in space and time are evaluated leading to an optimal order in error bounds in space and a second order in time with a backward differentiation formula at the second order. Numerical tests devoted to two-phase flows are provided on ellipsoidal droplet retraction, on the capillary rising of a liquid in a tube, and on the wetting drop over a horizontal solid wall.  相似文献   

15.
The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non‐Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non‐Newtonian stress is treated as a source term in the Stokes equations, which yields an extra integral over the domains containing non‐Newtonian material. By transforming the integral representation for the velocity to cylindrical co‐ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from three to two. A boundary element method for the remaining two‐dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non‐Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd‐B fluid and a viscoelastic material are presented. Moreover, the method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break‐up mechanism of compound drops in relation to the specific non‐Newtonian character of the membrane. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamics of single droplets in a bounded shear flow is experimentally and numerically investigated for blends that contain one viscoelastic component. Results are presented for systems with a viscosity ratio of 1.5 and a Deborah number for the viscoelastic phase of 1. The numerical algorithm is a volume-of-fluid method for tracking the placement of the two liquids. First, we demonstrate the validation of the code with an existing boundary integral method and with experimental data for confined systems containing Newtonian components. This is followed by numerical simulations and experimental data for the combined effect of geometrical confinement and component viscoelasticity on the droplet dynamics after startup of shear flow at a moderate capillary number. The viscoelastic liquids are Boger fluids, which are modeled with the Oldroyd-B constitutive model and the Giesekus model. Confinement substantially increases the viscoelastic stresses and the elongation rates in and around the droplet. We show that the latter can be dramatic for the use of the Oldroyd-B model in confined systems with viscoelastic components. A sensitivity analysis for the choice of the model parameters in the Giesekus constitutive equation is presented.  相似文献   

17.
When particles are dispersed in viscoelastic rather than Newtonian media, the hydrodynamics will be changed entailing differences in suspension rheology. The disturbance velocity profiles and stress distributions around the particle will depend on the viscoelastic material functions. Even in inertialess flows, changes in particle rotation and migration will occur. The problem of the rotation of a single spherical particle in simple shear flow in viscoelastic fluids was recently studied to understand the effects of changes in the rheological properties with both numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346] and experiments [Snijkers et al., J. Rheol. 53 (2009) 459–480]. In the simulations, different constitutive models were used to demonstrate the effects of different rheological behavior. In the experiments, fluids with different constitutive properties were chosen. In both studies a slowing down of the rotation speed of the particles was found, when compared to the Newtonian case, as elasticity increases. Surprisingly, the extent of the slowing down of the rotation rate did not depend strongly on the details of the fluid rheology, but primarily on the Weissenberg number defined as the ratio between the first normal stress difference and the shear stress.In the present work, a quantitative comparison between the experimental measurements and novel simulation results is made by considering more realistic constitutive equations as compared to the model fluids used in previous numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346]. A multimode Giesekus model with Newtonian solvent as constitutive equation is fitted to the experimentally obtained linear and nonlinear fluid properties and used to simulate the rotation of a torque-free sphere in a range of Weissenberg numbers similar to those in the experiments. A good agreement between the experimental and numerical results is obtained. The local torque and pressure distributions on the particle surface calculated by simulations are shown.  相似文献   

18.
We study an unsteady nonlinear fluid–structure interaction problem which is a simplified model to describe blood flow through viscoelastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier–Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid–structure interface and the action–reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain, in particular that contact between the viscoelastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, and of the existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure.  相似文献   

19.
The influence of matrix and droplet viscoelasticity on the steady deformation and orientation of a single droplet subjected to simple shear is investigated microscopically. Experimental data are obtained in the velocity–vorticity and velocity–velocity gradient plane. A constant viscosity Boger fluid is used, as well as a shear-thinning viscoelastic fluid. These materials are described by means of an Oldroyd-B, Giesekus, Ellis, or multi-mode Giesekus constitutive equation. The drop-to-matrix viscosity ratio is 1.5. The numerical simulations in 3D are performed with a volume-of-fluid algorithm and focus on capillary numbers 0.15 and 0.35. In the case of a viscoelastic matrix, viscoelastic stress fields, computed at varying Deborah numbers, show maxima slightly above the drop tip at the back and below the tip at the front. At both capillary numbers, the simulations with the Oldroyd-B constitutive equation predict the experimentally observed phenomena that matrix viscoelasticity significantly suppresses droplet deformation and promotes droplet orientation. These two effects saturate experimentally at high Deborah numbers. Experimentally, the high Deborah numbers are achieved by decreasing the droplet radius with other parameters unchanged. At the higher capillary and Deborah numbers, the use of the Giesekus model with a small amount of shear-thinning dampens the stationary state deformation slightly and increases the angle of orientation. Droplet viscoelasticity on the other hand hardly affects the steady droplet deformation and orientation, both experimentally and numerically, even at moderate to high capillary and Deborah numbers.  相似文献   

20.
In this paper, a fully discrete high‐resolution arbitrary Lagrangian–Eulerian (ALE) method is developed over untwisted time–space control volumes. In the framework of the finite volume method, 2D Euler equations are discretized over untwisted moving control volumes, and the resulting numerical flux is computed using the generalized Riemann problem solver. Then, the fluid flows between meshes at two successive time steps can be updated without a remapping process in the classic ALE method. This remapping‐free ALE method directly couples the mesh motion into a physical variable update to reflect the temporal evolution in the whole process. An untwisted moving mesh is generated in terms of the vorticity‐free part of the fluid velocity according to the Helmholtz theorem. Some typical numerical tests show the competitive performance of the current method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号