首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a moving mesh BGK scheme (MMBGK) for multi‐material flow computations is proposed. The basic idea of constructing the MMBGK is to couple the Lagrangian method, which tracks material interfaces and keeps the interfaces sharp, with a remapping‐free ALE‐type kinetic method within each single material region, where the kinetic method is based on the BGK (Bhatnagar–Gross–Krook) model. Within each single material region, a numerical flux formulation is developed on moving meshes from motion of microscope particles, and the mesh velocity is determined by requiring both mesh adaptation for accuracy and robustness, such that the grids are moving towards to the regions with high flow gradients in a way of diffusive mechanism (velocity) to adjust the distances between neighboring cells, thus increasing the numerical accuracy. To keep the sharpness of material interfaces, the Lagrangian velocity and flux are constructed at the interfaces only. Consequently, a BGK‐scheme‐based ALE‐type method (i.e., the MMBGK scheme) for multi‐material flows is constructed. Numerical examples in one and two dimensions are presented to illustrate the accuracy and robustness of the MMBGK scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We use here a reconnection ALE (ReALE) strategy to solve hydrodynamic compressible flows in cylindrical geometries. The main difference between the classical ALE and the ReALE method is the rezoning step where we allow change in the topology. This leads for ReALE to a polygonal mesh, which follows more efficiently the flow. We present here a new displacement of generators in order to keep the Lagrangian features, which are usually lost using ALE with fixed topology. The reconnection capability allows to deal with complex geometries and high‐vorticity problems contrary to ALE method. The main difficulty of ReALE is the remapping step where we have to remap physical variables on a mesh with a different topology. For this step, a new remapping method based on a swept intersection algorithm has been developed in the case of planar geometries. We present here the extension of the swept intersection‐based remapping method to cylindrical geometries. We demonstrate that our method can be applied to several numerical examples up to problem representative of hydrodynamic experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A typical arbitrary Lagrangian–Eulerian algorithm consists of a Lagrangian step, where the computational mesh moves with the fluid flow; a rezoning step, where the computational mesh is smoothed and repaired in case it gets too distorted; and a remapping step, where all fluid quantities are conservatively interpolated on this new mesh. In single‐material simulations, the remapping process can be represented in a flux form, with fluxes approximated by integrating a reconstructed function over intersections of neighboring computational cells on the original and rezoned computational mesh. This algorithm is complex and computationally demanding – Therefore, a simpler approach that utilizes regions swept by the cell edges during rezoning is often used in practice. However, it has been observed that such simplification can lead to distortion of the solution symmetry, especially when the mesh movement is not bound by such symmetry. For this reason, we propose an algorithm combining both approaches in a similar way that was proposed for multi‐material remapping (two‐step hybrid remap). Intersections and exact integration are employed only in certain parts of the computational mesh, marked by a switching function – Various different criteria are presented in this paper. The swept‐based method is used elsewhere in areas that are not marked. This way, our algorithm can retain the beneficial symmetry‐preserving capabilities of intersection‐based remapping while keeping the overall computational cost moderate.  相似文献   

5.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

6.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we present a new family of direct arbitrary–Lagrangian–Eulerian (ALE) finite volume schemes for the solution of hyperbolic balance laws on unstructured meshes in multiple space dimensions. The scheme is designed to be high‐order accurate both in space and time, and the mesh motion, which provides the new mesh configuration at the next time step, is taken into account in the final finite volume scheme that is based directly on a space‐time conservation formulation of the governing PDE system. To improve the computational efficiency of the algorithm, high order of accuracy in space is achieved using the a posteriori MOOD limiting strategy that allows the reconstruction procedure to be carried out with only one reconstruction stencil for any order of accuracy. We rely on an element‐local space‐time Galerkin finite element predictor on moving curved meshes to obtain a high‐order accurate one‐step time discretization, while the mesh velocity is computed by means of a suitable nodal solver algorithm that might also be supplemented with a local rezoning procedure to improve the mesh quality. Next, the old mesh configuration at time level tn is connected to the new one at tn + 1 by straight edges, hence providing unstructured space‐time control volumes, on the boundary of which the numerical flux has to be integrated. Here, we adopt a quadrature‐free integration, in which the space‐time boundaries of the control volumes are split into simplex sub‐elements that yield constant space‐time normal vectors and Jacobian matrices. In this way, the integrals over the simplex sub‐elements can be evaluated once and for all analytically during a preprocessing step. We apply the new high‐order direct ALE algorithm to the Euler equations of compressible gas dynamics (also referred to as hydrodynamics equations) as well as to the magnetohydrodynamics equations and we solve a set of classical test problems in two and three space dimensions. Numerical convergence rates are provided up to fifth order of accuracy in 2D and 3D for both hyperbolic systems considered in this paper. Finally, the efficiency of the new method is measured and carefully compared against the original formulation of the algorithm that makes use of a WENO reconstruction technique and Gaussian quadrature formulae for the flux integration: depending on the test problem, the new class of very efficient direct ALE schemes proposed in this paper can run up to ≈12 times faster in the 3D case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant formulations is presented. It is carried out in the context of the finite element method for general advective–diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed‐grid counterpart. However, only a few works proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the θ family of time integration methods. In addition, an extension to the three‐point backward difference formula is given. With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
基于ALE方法的3D充填流动模拟   总被引:1,自引:1,他引:0  
基于任意拉格朗日-欧拉方法发展了三维充填流动的数值模拟方案.该方案采用ALE方法准确地追踪移动自由面的位置并避免了网格扭曲;基于移动最小二乘曲面拟合方法提出了移动自由面上网格节点重定位方法,将充填流动的网格更新过程简化为自由面附近的局部网格重划分过程,并通过分级多面体三角剖分实现,减小了网格划分的计算量,实现了实时网格生成.给出的数值算例结果表明了该数值模型对三维充填流动模拟的有效性.  相似文献   

12.
The flux reconstruction (FR) formulation can unify several popular discontinuous basis high-order methods for fluid dynamics, including the discontinuous Galerkin method, in a simple, efficient form. An arbitrary Lagrangian–Eulerian (ALE) extension to the high-order FR scheme is developed here for moving mesh fluid flow problems. The ALE Navier–Stokes equations are derived by introducing a grid velocity. The conservation law are spatially discretised on hybrid unstructured meshes using Huynh’s scheme (Huynh 2007) on anisotropic elements (quadrilaterals) and using Correction Procedure via Reconstruction scheme on isotropic elements (triangles). The temporal discretisation uses both explicit and implicit treatments. The mesh movement is described by node positions given as a time series, instead of an analytical formula. The geometric conservation law is tested using free stream preservation problem. An isentropic vortex propagation test case is performed to show the high-order accuracy of the developed method on both moving and fixed hybrid meshes. Flow around an oscillating cylinder shows the capability of the method to solve moving boundary viscous flow problems, with the numeric method further verified by comparison of the result on a smoothly deforming mesh and a rigid moving mesh.  相似文献   

13.
In this work, an approach for performing mesh adaptation in the numerical simulation of two‐dimensional unsteady flow with moving immersed boundaries is presented. In each adaptation period, the mesh is refined in the regions where the solution evolves or the moving bodies pass and is unrefined in the regions where the phenomena or the bodies deviate. The flow field and the fluid–solid interface are recomputed on the adapted mesh. The adaptation indicator is defined according to the magnitude of the vorticity in the flow field. There is no lag between the adapted mesh and the computed solution, and the adaptation frequency can be controlled to reduce the errors due to the solution transferring between the old mesh and the new one. The preservation of conservation property is mandatory in long‐time scale simulations, so a P1‐conservative interpolation is used in the solution transferring. A nonboundary‐conforming method is employed to solve the flow equations. Therefore, the moving‐boundary flows can be simulated on a fixed mesh, and there is no need to update the mesh at each time step to follow the motion or the deformation of the solid boundary. To validate the present mesh adaptation method, we have simulated several unsteady flows over a circular cylinder stationary or with forced oscillation, a single self‐propelled swimming fish, and two fish swimming in the same or different directions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, an ALE finite element method to simulate the partial melting of a workpiece of metal is presented. The model includes the heat transport in both the solid and liquid part, fluid flow in the liquid phase by the Navier–Stokes equations, tracking of the melt interface solid/liquid by the Stefan condition, treatment of the capillary boundary accounting for surface tension effects and a radiative boundary condition. We show that an accurate treatment of the moving boundaries is crucial to resolve their respective influences on the flow field and thus on the overall energy transport correctly. This is achieved by a mesh‐moving method, which explicitly tracks the phase boundary and makes it possible to use a sharp interface model without singularities in the boundary conditions at the triple junction. A numerical example describing the welding of a thin‐steel wire end by a laser, where all aforementioned effects have to be taken into account, proves the effectiveness of the approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a Lagrangian–Eulerian finite element formulation for solving fluid dynamics problems with moving boundaries and employs the method to long wave run‐up. The method is based on a set of Lagrangian particles which serve as moving nodes for the finite element mesh. Nodes at the moving shoreline are identified by the alpha shape concept which utilizes the distance from neighbouring nodes in different directions. An efficient triangulation technique is then used for the mesh generation at each time step. In order to validate the numerical method the code has been compared with analytical solutions and a preexisting finite difference model. The main focus of our investigation is to assess the numerical method through simulations of three‐dimensional dam break and long wave run‐up on curved beaches. Particularly the method is put to test for cases where different shoreline segments connect and produce a computational domain surrounding dry regions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper concerns the modelling of dynamically loaded journal bearing systems using a moving spectral element method. The moving grid method employed in this paper is the arbitrary Lagrangian–Eulerian (ALE) method. The ALE methodology is compared with a quasi‐Eulerian approach in the context of dynamically loaded journal bearings and the advantages of adopting the ALE formulation are highlighted. A comparison with the predictions of lubrication theory is also presented and the limitations of the lubrication approximation are demonstrated when inertial effects are significant. A comprehensive set of results is presented illustrating the salient features of the spectral element mesh generation schemes described in the paper and the way in which these impinge on the efficiency of the iterative solution of the discrete equations at each time step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the parametric investigation on the structural dynamic response of moving fuel‐storage tanks with baffles. Since the structural dynamic behaviour is strongly coupled with interior liquid motion, the design of a fuel‐storage tank securing the structural stability becomes the appropriate suppression of the flow motion, which is in turn related to the baffle design. In order to numerically investigate the parametric dynamic characteristics of moving tanks, we employ the arbitrary Lagrangian–Eulerian (ALE) finite element method that is widely being used to deal with the problems with free surface, moving boundary, large deformation and interface contact. Following the theoretical and numerical formulations of fluid‐structure interaction problems, we present parametric numerical results of a cylindrical fuel‐storage tank moving with uniform vertical acceleration, with respect to the baffle number and location, and the inner‐hole diameter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号