首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
In this present work, we clarify the excited-state intramolecular proton transfer (ESIPT) mechanism for 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (BDABE) system. We present the fact that excited-state single proton transfer can occur along with one hydrogen bond, even though BDABE form consists of two intramolecular hydrogen bonds. Based on the density functional theory and time-dependent density functional theory methods, we theoretically investigate and elaborate the excited-state intramolecular dual hydrogen-bonding interactions. By simulating the electrostatic potential surface, we verify the formation of dual intramolecular hydrogen bonds for BDABE molecule in the S0 state. Furthermore, comparing the primary bond lengths and bond angles as well as the infrared vibrational spectra, we find that the double hydrogen bonds should be strengthened in the S1 state. When it comes to photoexcitation process, we discover the charge redistribution around hydrogen bonding moieties. The increased electronic density around proton acceptor plays the important roles in strengthening hydrogen bonds and in facilitating ESIPT reaction. In view of the possible ESIPT reaction paths (i.e., stepwise and synchronization double proton transfer) for BDABE molecule, we explored the S0-state and S1-state potential energy curves. This work explains experimental results and further clarifies the excited-state behaviors for BDABE system.  相似文献   

2.
Organic chemosensors with excited-state intramolecular proton transfer (ESIPT) behavior have attracted much attention because it has great potential in a wide range of applications. Considering the paramount behavior of excited-state relaxation, in this work, we mainly focus on deciphering photo-induced hydrogen bonding effects and ESIPT mechanism for the novel 2-(benzo[d]thiazol-2-yl)-4-(9H-carbazol-9-yl)phenol (mCzOH) dye. Considering the effects of different solvents on excited-state dynamics of mCzOH flurophore, we adopt four solvents with different polarities. Analyses of fundamental structural changes, infrared (IR) vibrational spectra, and core valence partition index between S0 and S1 state, we confirm hydrogen bond O H···N of mCzOH should be enhanced via photoexcitation. Especially, the increase of solvent polarity could promote hydrogen bonding strengthening degree. Intramolecular charge transfer (ICT) resulting from photoexcitation qualitatively facilitates the ESIPT occurrence to a large extent. For further checking and probing into ESIPT mechanism, via constructing potential energy curves (PECs) in four solvents, we clarify the ESIPT behavior for mCzOH. Most worthy of mention is that polar solvent plays critical roles in lowering potential barrier of ESIPT reaction and in facilitating ESIPT process. We not only clarify the detailed excited-state process, but also present the solvent-polarity-dependent ESIPT mechanism for mCzOH fluorophore.  相似文献   

3.
Two novel 2′-hydroxychalcone derivatives (i.e., M1 and M2) are explored in this work. We mainly focus on investigating the effects of photoexcitation on hydrogen bonds and on the excited-state intramolecular proton transfer (ESIPT) process. On the basis of calculations of electrostatic potential surface and intramolecular interactions, we verify the formation of hydrogen bond O1 H2···O3 in both S0 and S1 states. Exploring the ultraviolet–visible spectra in the liquid phase, our simulated results reappear in the experimental phenomenon. Analyzing molecular geometry and infrared stretching vibrational spectra, we confirm O1 H2···O3 is strengthened for both M1 and M2 in the S1 state. We further confirm that charge redistribution facilitates ESIPT tendency. Constructing potential energy curves, we find the ultrafast ESIPT behavior for M1, which is because of the deficiency of side hydroxyl moiety comparing with M2. This work makes a reasonable affiliation of the ESIPT mechanism for M1 and M2. We wish this paper could facilitate understanding these two novel systems and promote their applications.  相似文献   

4.
《中国化学会会志》2018,65(6):667-673
Adopting density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we investigat and present two different excited‐state intramolecular proton transfer (ESIPT) mechanisms of angular‐quinacridone (a‐QD) in both toluene and DMF,theoretically. Comparing the primary structural variations of a‐QD involved in the intramolecular hydrogen bond, we conclude that N1–H2⋯O3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Particularly, in toluene, the S1‐state‐stable a‐QD enol* could not be located because of the non‐barrier ESIPT process. Concomitantly, infrared vibrational spectral analysis further verified the stability of the hydrogen bond. In addition, the role of charge–transfer interaction has been addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. The potential energy curves according to variational N1–H2 coordinate demonstrates that the proton transfer process should occur spontaneously in toluene; however, in DMF, a low potential energy barrier of 0.493 kcal/mol is needed to complete the ESIPT reaction. Although this barrier of 0.493 kcal/mol is too low to make an important impact on the ESIPT reaction, just because of the existence of barrier, ESIPT mechanisms in toluene and DMF are different.  相似文献   

5.
Given facile synthetic route and excellent photo stability, excited state intramolecular proton transfer (ESIPT)-active luminous materials have gained more and more attention. Here, we focus on photo-induced excitation process and the ESIPT reaction process for the novel 5-benzothiazol-2-yl-6-hydroxy-2-methyl-isoindole-1,3-dione (HPIBT) molecule. On the level of chemical geometries and infrared spectra, we verify that O─H⋯N of HPIBT should be enhanced. We find that a proton is likely to be attracted by enhanced electronic densities around N, that is, charge transfer impetus ESIPT trend. Combing potential energy curves and searching for transition state, we clarify the ultrafast ESIPT mechanism of HPIBT due to a low barrier, which legitimately explains previous experimental characteristics.  相似文献   

6.
It is well known that the molecular excited state dynamical process plays important roles in designing and developing novel applications. In this work, based on density functional theory and time‐dependent density functional theory methods, we theoretically explored a novel 3‐hydroxythioflavone (3HTF). Through calculating the electrostatic potential surface of the 3HTF structure, we confirm the formation of intramolecular hydrogen bonding O2‐H3···O4. Our theoretically obtained dominating bond lengths and bond angles involved in hydrogen bonds demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. Coupling with the simulated infrared vibrational spectra, we further verify the enhanced hydrogen bonding O2‐H3···O4 in the S1 state. Upon photoexcitation, we found that the charge transfer characteristics around hydrogen bonding moieties play important roles in facilitating the excited state intramolecular proton transfer (ESIPT) process. Via constructing potential energy curves in both S0 and S1 states, we confirm the almost nonbarrier ESIPT reaction should be an ultrafast process that further explains the previous experimental phenomenon. At last, we search the S1‐state transition state (TS) structure along with ESIPT path, based on which we simulate the intrinsic reaction coordinate path that further confirms the ESIPT mechanism. We hope that our theoretical work could guide novel applications based on the 3HTF system in future.  相似文献   

7.
The excited-state dynamics of the excited-state proton transfer and intramolecular twisted charge transfer (TICT) reactions of a molecular photoswitch 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine (DHP) in aprotic and alcoholic solvents have been theoretically investigated by using time-dependent density functional theory. The excited-state intramolecular proton transfer (ESIPT) reaction of DHP proceeding upon excitation in all the solvents has been confirmed, and the dual emission has been assigned to the enol and keto forms of DHP. However, for methanol and ethanol solvents within strong hydrogen-bonded capacity, the intermolecular hydrogen bonds between DHP and methanol/ethanol would promote an excited-state double proton transfer (ESDPT) along the hydrogen-bonded bridge. Importantly, the previous proposed ESDPT-triggered TICT mechanism of DHP in methanol and ethanol was not supported by our calculations. The twist motion would increase the total energy of the system for both the products of ESIPT and ESDPT. According to the calculations of the transition states, the ESDPT reaction occurs much easier in keto form generated by ESIPT. Therefore, a sequential ESIPT and ESDPT mechanism of DHP in methanol and ethanol has been reasonably proposed.  相似文献   

8.
Herein, two compounds, 4-2′-hydroxybenzylidenehydrazinyl-N-butyl-1,8-naphthalimide(BN-1) and 4-benzylidenehydra-zinyl-N-butyl-1,8-naphthalimide(BN-2), were synthesized to explore the hydrogen bonding effect on mechanoresponsive luminescent(MRL). The results showed that compound BN-1 exhibited strong emission in solution and solid-state compared with compound BN-2. After grinding, the emission intensity of compound BN-1 sharply decreased by as much as 15 times with an obvious red-shift from 552 nm to 577 nm. The control compound BN-2, by contrast, did not change so much before and after grinding. Single crystal analysis suggests that BN-1 molecule formed strong intramolecular interaction via ―N=N···H―O hydrogen bond with a distance of 0.2632 nm. An excited-state intramolecular proton transfer(ESIPT) based fluorophore featured this intramolecular hydrogen bond. The intramolecular hydrogen bond as well as other intermolecular interactions can rigidify the molecular conformation of compound BN-1 in solid-state, and thus suppress the nonradiative pathways, resulting in strong emission. These intra- and intermolecular interactions were destroyed by mechanical stimuli, accompanied by molecular conformation change that decreases the luminescence and blocks the ESIPT process. The MRL process was also demonstrated by scanning electron microscopy and powder X-ray diffraction. The molecular stacking mode changed from crystalline to a disordered amorphous state after grinding.  相似文献   

9.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

10.
A novel pH-sensitive fluorescent probe T2(OH)B was selected to theoretically investigate its excited state hydrogen bonding effects and excited state intramolecular proton transfer (ESIPT) process. First, it was verified that one intramolecular hydrogen bond is formed spontaneously in T2(OH)B itself. Given the geometrical changes, we further confirm that the hydrogen bond should be strengthened in the first excited state. When it comes to the photoexcitation process, we present the charge redistribution around hydrogen bonding moieties facilitate the ESIPT tendency. The increased electronic densities around acceptor promote the attraction of hydrogen protons. The potential energy barrier in the constructed potential energy curves reveals that the ESIPT process of the T2(OH)B system should be ultrafast. And comparing several nonpolar solvents, we deem solvent polarity plays little role in the ESIPT reaction. Furthermore, we also search the S1-state transition state structure along with the ESIPT path, based on which we simulate the intrinsic reaction coordinate path. We not only confirm the ESIPT mechanism presented in this work but also clarify the ultrafast excited state process and explain previous experiment. We sincerely hope that our theoretical work could guide novel applications based on the T2(OH)B system in future.  相似文献   

11.
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   

12.
《中国化学会会志》2018,65(7):822-827
In this work, based on density functional theory (DFT) and time‐dependent DFT (TD‐DFT) methods, we theoretically investigate the excited‐state process of the 2‐(6'‐hydroxy‐2'‐pyridyl)benzimidazole (2HPB) system in acetonitrile and water solvents. Since acetonitrile is an aprotic solvent, it has no effect on the solvent‐assisted excited‐state proton transfer (ESPT) process. Therefore, the 2HPB molecule cannot transfer the proton in acetonitrile, which is consistent with previous experimental observation. On the other hand, 2HPB can combine one water molecule (which is a protic solvent), forming the 2HPB–H2O complex in the S0 state. After photoexcitation, the intermolecular hydrogen bonds O1 H2···O3 and O3 H4···N5 both get strengthened in the S1 state, which leads to the possibility of a water‐assisted ESPT process. Further, the charge redistribution reveals the tendency of ESPT. By exploring the potential energy curves for the 2HPB–H2O complex in water, we confirm that a stepwise double proton transfer process occurs in the S1 state. Water‐assisted ESIPT can occur along O1 H2···O3 or O3 H4···N5 because of their similar potential barriers. Based on the stepwise ESPT mechanism, we reinterpret the absorption and fluorescence spectra mentioned in the experiments and confirm the rationality of the water‐assisted ESPT process.  相似文献   

13.
Regioselective displacement reaction of ammonia with 5-bromo-2,4-dichloro-6-methylpyrimidine was studied by X-ray crystallography analysis and showed the formation of 5-bromo-2-chloro-6-methylpyrimidin-4-amine as a main product. Reaction of the latter compound with secondary amines in boiling ethanol afforded 4-amino-5-bromo-2-substituted aminopyrimidines. The synthesized compound in this paper crystallized in the monoclinic crystal system space group P21/n. In the title cocrystal, 5-bromo-2-chloro-6-methylpyrimidin-4-amine·3H2O, the asymmetric unit contains one crystallographically independent 5-bromo-2-chloro-6-methylpyrimidin-4-amine and three crystallization of water molecules. The typical intramolecular O−H⋯N as well as O−H⋯O hydrogen bond is observed in the crystalline network of the title compound. It is interesting to point out that the crystal structure is further stabilized by O−H⋯O hydrogen bonds created by (H2O) clusters.  相似文献   

14.
A novel fluorescent probe 4′-fluoroflavonol (4F) was reported by Serdiuk et al. (RSC Adv 6:42532, 2016) in a previous paper. Spectroscopic studies on excited-state proton transfer (ESPT) of 4F was mentioned, while the mechanism of ESPT for 4F isdeficiency. In this present work, based on the time dependent density functional theory (TDDFT), we investigated the excited-state intramolecular proton transfer (ESIPT) mechanism of 4F theoretically. The primary bond lengths, bond angles and the infrared (IR) vibrational spectra involved in the formation of hydrogen bonds vertified the intramolecular hydrogen bond was strengthened, which manifests the tendency of excited state proton transfer. According to the results of calculated potential energy curves along O–H coordinate, an about 13.18 kcal/mol barrier has been found in the S0 state. However, a barrier of 3.29 kcal/mol was found in the S1 state, which demonstrates that the proton transfer process is more likely to occur in the excited state. In other words, the proton transfer was facilitated by photoexcitation. Particularly, the study about ESIPT mechanism of 4F should be helpful for further understanding property of fisetin.  相似文献   

15.
The title compound, C17H18ClN3O4, adopts the keto–amine tautomeric form and displays an intramolecular N—H⋯O hydrogen bond [N⋯O = 2.639 (2) Å]. The configuration around the azo N=N double bond is trans, and the dihedral angle between the planes of the two aromatic rings is 20.5 (2)°. The mol­ecules are linked by O—H⋯O hydrogen bonds to form a three‐dimensional network.  相似文献   

16.
In the crystal structure of the title compound, C9H9NO3, there are strong intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds which, together with weak inter­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules. The calculated inter­molecular hydrogen‐bond energies are −11.3 and −2.7 kJ mol−1, respectively, showing the dominant role of the O—H⋯O hydrogen bonding. A natural bond orbital analysis revealed the electron contribution of the lone pairs of the oxazoline N and O atoms, and of the two hydr­oxy O atoms, to the order of the relevant bonds.  相似文献   

17.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

18.
In the crystal structure of 2,2′‐bipyridinium(1+) bromide monohydrate, C10H9N2+·Br·H2O, the cation has a cisoid conformation with an intramolecular N—H⋯N hydrogen bond. The cation also forms an N—H⋯O hydrogen bond to an adjacent water mol­ecule, which in turn forms O—H⋯Br hydrogen bonds to adjacent Br anions. In this way, a chain is formed extending along the b axis. Additional interactions (C—H⋯Br and π–π) serve to stabilize the structure further.  相似文献   

19.
In the present work, the electron density flows involved throughout the progress of the four reaction pathways associated with the intramolecular [3 + 2] cycloaddition of cyclic nitrones Z-1 and E-1 are analyzed using the bonding evolution theory. The present study highlights the nonconcerted nature of the processes, which can be described as taking place in several stages. The first stage consists in the depopulation of the initial CN and CC double bonds to render the N lone pair and the corresponding C N and C C single bonds, and these electronic flows initiate the reactions. The C C and C O sigma bond formations take place later on, once the transition states have been overcome. Along the bridged pathways, the C C bond formation process precedes the O C bond formation event, although, along the fused paths, the O C bond formation process occurs first and the formation of the C C bond is the last electronic flow to take place. Finally, curly arrow representations accounting for the timing of the electron flows are obtained from the bonding evolution theory results.  相似文献   

20.
Molecules of the title compound, C28H27ClN4O4·C2H6O, form a C(6) chain via an N—H⋯O hydrogen bond along the c axis by the operation of a c-glide plane, with N⋯O = 2.761 (3) Å and N—H⋯O = 165°. The mol­ecules are further linked by a weak C—H⋯O interaction, with C⋯O = 3.344 (4) Å and C—H⋯O = 150°. Pendant hydrogen-bonded ethanol solvent mol­ecules are attached to the chains by O—H⋯N hydrogen bonds, with O⋯N = 2.904 (3) Å and O—H⋯N = 175°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号