首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Many in vitro studies have pointed out the interaction between amyloids and membranes, and their potential involvement in amyloid toxicity. In a previous study, we generated a yeast toxic mutant (M8) of the harmless model amyloid protein HET-s((218-289)). In this study, we compared the self-assembling process of the nontoxic wild-type (WT) and toxic (M8) protein at the air-water interface and in interaction with various phospholipid monolayers (DOPE, DOPC, DOPI, DOPS and DOPG). We first demonstrate using ellipsometry measurements and polarization-modulated infrared reflection absorption spectroscopy (PMIRRAS) that the air-water interface promotes and modifies the assembly of WT since an amyloid-like film was instantaneously formed at the interface with an antiparallel β-sheet structuration instead of the parallel β-sheet commonly observed for amyloid fibers generated in solution. The toxic mutant (M8) behaves in a similar manner at the air-water interface or in bulk, with a fast self-assembling and an antiparallel β-sheet organization. The transmission electron microscopy (TEM) images established the fibrillous morphology of the protein films formed at the air-water interface. Second, we demonstrate for the first time that the main driving force between this particular fungus amyloid and membrane interaction is based on electrostatic interactions with negatively charged phospholipids (DOPG, DOPI, DOPS). Interestingly, the toxic mutant (M8) clearly induces perturbations of the negatively charged phospholipid monolayers, leading to a massive surface aggregation, whereas the nontoxic (WT) exhibits a slight effect on the membrane models. This study allows concluding that the toxicity of the M8 mutant could be due to its high propensity to interact with membranes.  相似文献   

2.
3.
The cationic peptide [KIGAKI](3) was designed as an amphiphilic β-strand and serves as a model for β-sheet aggregation in membranes. Here, we have characterized its molecular conformation, membrane alignment, and dynamic behavior using solid-state (19)F NMR. A detailed structure analysis of selectively (19)F-labeled peptides was carried out in oriented DMPC bilayers. It showed a concentration-dependent transition from monomeric β-strands to oligomeric β-sheets. In both states, the rigid (19)F-labeled side chains project straight into the lipid bilayer but they experience very different mobilities. At low peptide-to-lipid ratios ≤1:400, monomeric [KIGAKI](3) swims around freely on the membrane surface and undergoes considerable motional averaging, with essentially uncoupled φ/ψ torsion angles. The flexibility of the peptide backbone in this 2D plane is reminiscent of intrinsically unstructured proteins in 3D. At high concentrations, [KIGAKI](3) self-assembles into immobilized β-sheets, which are untwisted and lie flat on the membrane surface as amyloid-like fibrils. This is the first time the transition of monomeric β-strands into oligomeric β-sheets has been characterized by solid-state NMR in lipid bilayers. It promises to be a valuable approach for studying membrane-induced amyloid formation of many other, clinically relevant peptide systems.  相似文献   

4.
The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 ? thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.  相似文献   

5.
Host-defense, antibiotic peptides are believed to generate their cytolytic effects by interacting with the membranes of bacterial cells. Direct analyses of peptide interactions with real cellular membranes are difficult, however, due to the high complexity of physiological membranes. This review summarizes experimental work aiming to understand peptide-membrane interactions and their relationships with the peptides' biological actions using specific model systems. Varied model assemblies have been constructed that generally aim to mimic the fundamental lipid bilayer organization of the membrane. The model systems we will describe include multilamellar and unilamellar vesicles, planar lipid bilayers, lipid monolayers and micelles, and colorimetric biomimetic membranes. The different artificial models have facilitated examination of specific biological or chemical parameters affecting peptide action, for example the effect of membrane lipid composition on peptide affinities and membrane penetration, the relationship between membrane fluidity and peptide interactions, the conformations of active peptides, and other factors. We evaluate the strengths and limitations of the various approaches, and point to future directions in the field.  相似文献   

6.
报道了硫醇-磷脂混合双层膜的循环伏安和电化学交流阻抗行为研究,并用电化学方法考察了蜂毒素与其相互作用,实验中通过冷冻表面沾有磷脂溶液的硫醇单层膜制备混合双层膜,研究表明双层膜在电极表面形成致密的绝缘层,阻碍了电极表面的电子传递,在双层膜体系上引入的蜂毒素可在膜表面上形成孔洞,破坏膜的绝缘性,降低膜电阻,增加膜电容,使带负电的探针Fe(CN)6^3-的氧化还原反应速度加快。  相似文献   

7.
Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.  相似文献   

8.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

9.
C-reactive protein (CRP) is a major acute phase reactant in most mammalian species. The structure of CRP has been previously established by crystallography, and the significance of its interaction with lipid membranes is accepted in the literature. However, the nature of the interaction between CRP and phospholipids is not yet well understood. In this paper we use monolayer technique to study the characteristics of the interaction of rabbit C-reactive protein (rCRP) with the phospholipid membranes. The results show that rCRP is surface active and can spontaneously insert into the lipid monolayers. The critical pressure for rCRP inserting into the phospholipid monolayers is about 34.5 mN/m, which is not sensitive to the types of the lipid headgroups and the presence of calcium ions in the subphase. The findings of this paper may provide a clue to the further understanding of the mechanism of the interactions between rCRP and the biological membranes.  相似文献   

10.
Characterization of the oligomerization of membrane-associated peptides is important to understand the folding and function of biomolecules like antimicrobial peptides, fusion peptides, amyloid peptides, toxins, and ion channels. However, this has been considered to be very difficult, because the amphipathic properties of the constituents of the cell membrane pose tremendous challenges to most commonly used biophysical techniques. In this study, we present the application of a simple (14)N solid-state NMR spectroscopy of aligned model membranes containing a phosphatidyl choline lipid to investigate the oligomerization of membrane-associated peptides. Since the near-symmetric nature of the choline headgroup of a phosphocholine lipid considerably reduces the (14)N quadrupole coupling, there are significant practical advantages in using (14)N solid-state NMR experiments to probe the interaction of peptide or protein with the surface of model membranes. Experimental results for several membrane-associated peptides are presented in this paper. Our results suggest that the experimentally measured (14)N quadrupole splitting of the lipid depends on the peptide-induced changes in the electrostatic potential of the lipid bilayer surface and therefore on the nature of the peptide, peptide-membrane interaction, and peptide-peptide interaction. It is inferred that the membrane orientation and oligomerization of the membrane-associated peptides can be measured using (14)N solid-state NMR spectroscopy.  相似文献   

11.
Nanoscale imaging of domains in supported lipid membranes   总被引:7,自引:0,他引:7  
The formation of domains in supported lipid membranes has been studied extensively as a model for the 2D organization of cell membranes. The compartmentalization of biological membranes to give domains such as cholesterol-rich rafts plays an important role in many biological processes. This article summarizes experiments from the author's laboratory in which a combination of atomic force microscopy and near-field scanning optical microscopy is used to probe phase separation in supported monolayers and bilayers as models for membrane rafts. These techniques are used to study binary and ternary lipid mixtures that have gel-phase or liquid-ordered domains that vary in size from tens of nanometers to tens of micrometers, surrounded by a fluid-disordered membrane. Examples are presented in which these models are used to investigate the distribution of glycolipid membrane raft markers and the preference for peptide and protein localization in ordered versus fluid membrane phases. Finally, the enzyme-mediated restructuring of membranes containing liquid-ordered domains provides an in vitro model for the coalescence of membrane rafts to give signaling platforms. Overall, the results demonstrate the importance of using techniques that can probe the nanoscale organization of membranes and of combining techniques that yield complementary information. Furthermore, the ability of supported lipid bilayers to model some aspects of membrane compartmentalization provides an important approach to understanding natural membranes.  相似文献   

12.
The aim of the present study was to evaluate the penetration of paclitaxel in normal as well as cancerous human cervical monolayer membranes and to compare these results with the paclitaxel penetration in a model dipalmitoylphosphatidylcholine (DPPC) monolayer. At physiologically relevant surface pressures of 30 mN/m, equilibrium drug penetration was observed in DPPC model membrane, whereas in cervical lipid model membranes exclusion of the drug and destabilization of the membrane was observed. The maximum surface pressure increment due to penetration (Δπmax) of 600 nM paclitaxel, for DPPC monolayer was found to be 3.6, 5.4 and 5.0 times higher than those for penetration in the cancerous monolayer at surface pressures 10, 20 and 30 mN/m, respectively. At initial surface pressure 10 mN/m, the maximum surface pressure increment, for 600 nM paclitaxel penetration, of normal cervical lipid membrane was double that of the cancerous cervical lipid membrane. At 30 mN/m initial surface pressure the representative IC50 concentration of the drug produced negligible drug penetration and significant membrane destabilization in cervical lipid model membranes. The difference in penetration profile could be due to differences in composition of the model membranes. The cholesterol level in cancerous cervical membrane was 1.5-folds higher than that in the normal cervical membrane. Apart from PC, another constituent present in 20–32% in cancerous and normal membranes is sphingomyelin (SM). Introduction of 70% SM to the DPPC monolayer decreased the Δπmax from 4.7 to 1.1 mN/m, revealing the rigidifying effect of SM which was directly proportional to the amount of SM added. Modulation of fluidity of the membranes can alter the penetration of paclitaxel in biological membranes and hence its toxicity profile.  相似文献   

13.
The fluid mosaic model of biological membranes is that of a two-dimensional lipid bilayer in which both lipids and associated membrane proteins diffuse freely. More recently, the raft hypothesis proposed that membranes contain small, dynamic, functional domains (rafts), which act as platforms for membrane protein attachment and interaction. Although experimental evidence supporting the raft hypothesis is growing, very little is known of the structure of the membrane-fluid interface of lipid raft systems. Here, we report the direct submolecular-scale imaging of model raft membranes using ultrahigh resolution atomic force microscopy. We characterize the heterogeneous nature of crystalline hydration layers at the membrane-fluid interface. The association of crystalline hydration layers with raft membranes would significantly affect the mechanism and kinetics of both inter-raft interactions and those between rafts and external biomolecules, and therefore this finding has important implications for membrane biology.  相似文献   

14.
Factor X is a blood clotting protein that associates at membrane surfaces to become activated during the coagulation cascade. A molecular level understanding of the protein-membrane phospholipid interactions has not been reached, although it is thought that the protein binds to phospholipids in the presence of calcium through a bridge with the Gla (gamma-carboxyglutamic acid) domain on the protein. In this work, phospholipid Langmuir monolayers have been utilized as model membranes to study factor X association with phospholipid membrane components. Surface pressure measurements indicate that subphase addition of sodium, magnesium, and calcium ions enhances protein penetration of the lipid monolayer, with the largest association found with calcium ions in the subphase. Fluorescence microscopy images collected after protein penetration of lipid monolayers indicate monolayer condensation in the presence of sodium and magnesium ions. Aggregation of lipid domains is induced when calcium is in the subphase, indicating binding-induced flocculation of surface lipid aggregates. Calcium binding to factor X likely causes a conformational change which allows protein-membrane interaction via hydrophobic association with lipid molecules.  相似文献   

15.
In situ and real-time characterization of protein secondary structures at interfaces is important in biological and bioengineering sciences, yet remains technically challenging. In this study, we used chiral sum frequency generation (SFG) spectroscopy to establish a set of vibrational optical markers for characterizing protein secondary structures at interfaces. We discovered that the N-H stretches along the peptide backbones of α-helices can be detected in chiral SFG spectra. We further observed that the chiral vibrational signatures of the N-H stretch together with the peptide amide I are unique to α-helix, β-sheet, and random coil at interfaces. Using these chiral vibrational signatures, we studied the aggregation of human islet amyloid polypeptide (hIAPP), which is implicated in type II diabetes. We observed in situ and in real time the misfolding of hIAPP from random coils to α-helices and then β-sheets upon interaction with a lipid-water interface. Our findings show that chiral SFG spectroscopy is a powerful tool to follow changes in protein conformations at interfaces and identify interfacial protein secondary structures that elude conventional techniques.  相似文献   

16.
The study of interactions between biological molecules and model membranes is essential for the understanding of a number of physiological mechanisms involved in viral infections and dissemination. In this paper, the analysis of the interaction between a peptide from the p24 protein of Human Immunodeficiency Virus type 1 (HIV-1) and a phospholipid monolayer has pointed to a cooperative response in which very small amounts of peptide p24-1 (e.g. 0.05 mol%) can lead to measurable effects. Monolayer surface pressure and surface potential isotherms were affected for peptide concentrations as low as 0.05 mol%, with saturation at 0.5 mol%. The expansion effect from p24-1 is confirmed by changes in morphology of the monolayers using Brewster angle microscopy. Even though p24-1 is disordered in aqueous solutions, the interaction with dipalmitoyl phosphatidylcholine (DPPC) causes it to adopt an alpha-helix structure, as shown by circular dichroism (CD) data for multilamellar vesicles (MLV). The expansion of the phospholipid monolayer in a cooperative way may imply that p24-1 has potential antiviral activity, by participating in the cell rupture, with no need of specific receptors in the membrane.  相似文献   

17.
The SARS coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In the present work, we report a study of the binding and interaction with model membranes of a peptide pertaining to the putative fusion domain of SARS-CoV, SARS FP, as well as the structural changes that take place in both the phospholipid and the peptide molecules upon this interaction. From fluorescence and infrared spectroscopies, the peptide ability to induce membrane leakage, aggregation and fusion, as well as its affinity toward specific phospholipids, was assessed. We demonstrate that SARS FP strongly partitions into phospholipid membranes, more specifically with those containing negatively charged phospholipids, increasing the water penetration depth and displaying membrane-activity modulated by the lipid composition of the membrane. Interestingly, peptide organization is different depending if SARS FP is in water or bound to the membrane. These data suggest that SARS FP could be involved in the merging of the viral and target cell membranes by perturbing the membrane outer leaflet phospholipids and specifically interacting with negatively charged phospholipids located in the inner leaflet.  相似文献   

18.
A membrane inclusion can be defined as a complex of protein or peptide and the surrounding significantly distorted lipids. We suggest a theoretical model that allows for the estimation of the influence of membrane inclusions on the curvature elastic properties of lipid membranes. Our treatment includes anisotropic inclusions whose energetics depends on their in-plane orientation within the membrane. On the basis of continuum elasticity theory, we calculate the inclusion-membrane interaction energy that reflects the protein or peptide-induced short-ranged elastic deformation of a bent lipid layer. A numerical estimate of the corresponding interaction constants indicates the ability of inclusions to sense membrane bending and to accumulate at regions of favorable curvature, matching the effective shape of the inclusions. Strongly anisotropic inclusions interact favorably with lipid layers that adopt saddlelike curvature; such structures may be stabilized energetically. We explore this possibility for the case of vesicle budding where we consider a shape sequence of closed, axisymmetric vesicles that form a (saddle-curvature adopting) membrane neck. It appears that not only isotropic but also strongly anisotropic inclusions can significantly contribute to the budding energetics, a finding that we discuss in terms of recent experiments.  相似文献   

19.
The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils.  相似文献   

20.
Liquid-ordered phase (lo phase) of lipid membranes has properties that are intermediate between those of liquid-crystalline phase and those of gel phase and has attracted much attention in both biological and biophysical aspects. Rafts in the lo phase in biomembranes play important roles in cell function of mammalian cells such as signal transduction. In this report, we have prepared giant unilamellar vesicles (GUVs) of lipid membranes in the lo phase and investigated their physical properties using phase-contrast microscopy and fluorescence microscopy. GUVs of dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol membranes and also GUVs of sphingomyelin (SM)/cholesterol membranes in the lo phase in water were formed at 20-37 degrees C successfully, when these membranes contained >/=30 mol % cholesterol. The diameters of GUVs of DPPC/cholesterol and SM/cholesterol membranes did not change from 50 to 28 degrees C, supporting that the membranes of these GUVs were in the lo phase. To elucidate the interaction of a substance with a long hydrocarbon chain with the lo phase membrane, we investigated the interaction of low concentrations (less than critical micelle concentration) of lysophosphatidylcholine (lyso-PC) with DPPC/cholesterol GUVs and SM/cholesterol GUVs in the lo phase. We found that lyso-PC induced several shape changes and vesicle fission of these GUVs above their threshold concentrations in water. The analysis of these shape changes indicates that lyso-PC can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. Threshold concentrations of lyso-PC in water to induce the shape changes and vesicle fission increased greatly with a decrease in chain length of lyso-PC. Thermodynamic analysis of this result indicates that shape changes and vesicle fission occur at threshold concentrations of lyso-PC in the membrane. These new findings on GUVs of the lo phase membranes indicate that substances with a long hydrocarbon chain such as lyso-PC can enter into the lo phase membrane and also the raft in the cell membrane. We have also proposed a mechanism for the lyso-PC-induced vesicle fission of GUVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号