首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

2.
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers, whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms, Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC), the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property.  相似文献   

3.
The adsorption of a model protein, bovine serum albumin (BSA), on Au electrodes was investigated using the Cu adatom probe method and Electrochemical Quartz Crystal Nanobalance (EQCN) technique. The adsorption of BSA was confirmed by AFM imaging and has been found to be controlled by kinetics. Using the Cu adatom probe method, we were able to reconstruct the entire BSA adsorption transient Theta(BSA) vs. t. The adsorption rate constant k(1), determined from this transient is k(1)=2.45x10(5) L mol(-1) s(-1). We have found that the bulk Cu(0) deposition process is blocked by BSA adsorption and it decays exponentially with time during BSA adsorption. It ceases completely when a full monolayer of BSA is formed. In contrast to that, the mass associated with Cu-u.p.d. decreases only to ca. 50% of that in the absence of BSA, indicating that Cu adatoms can penetrate (wedge) into the space between the surface Au atoms and the adsorbed BSA molecules. In addition to that, we have found that the degree of penetration of Cu adatoms can be controlled by the applied deposition potential. By selecting a sufficiently cathodic potential, we were able to deposit a full Cu-u.p.d. monolayer, independent of the BSA surface coverage extending from Theta(BSA)=0 to Theta(BSA) approximately 1. The positive shift of Cu(ad) desorption peak potential E(p), observed in the presence of adsorbed BSA, has been interpreted in terms of Frumkin exchange interaction forces between Cu(ad) and BSA(ad), on the basis of our earlier theoretical model, expanded here to include adsorbed species in two monolayers. This expansion is possible owing to the fast rate of Cu adatom penetration in the interfacial region. From the plots of E(p) vs. Theta(BSA), the presence of strong attractive interactions between Cu(ad) and BSA(ad) was deduced. These interactions result in a super-shift of the Cu-u.p.d. desorption peak potential, corresponding to the exchange interaction coefficient g(M,X)<-4, indicating on a possibility of the formation of a stable interface complex.  相似文献   

4.
The antimalarial agent halofantrine penetrates dipalmitolylphosphatidylcholine (DPPC) monolayers resulting in an increase in surface pressure and an expansion in area occupied by the lipid components of the monolayer. This phenomenon is observed at concentrations (0.05-0.2 microm) of halofantrine that have no surface activity. Penetration increases with drug concentration and is greatest at low initial surface pressures of the monolayer. A critical surface pressure of the DPPC monolayer has been determined from constant area and constant pressure conditions. The magnitude of these values support the hypothesis that halofantrine readily penetrates the DPPC monolayers. The presence of cholesterol in the DPPC monolayer hampers penetration and a lower critical surface pressure is obtained under such conditions. Even then, a slower rate of penetration is observed only in monolayers maintained at high initial surface pressures (10, 15 mN/m), corresponding to the liquid condensed phase of the monolayer, and not at low surface pressures (2.5, 5.0 mN/m). These results help to give a better understanding of the dynamics of the halofantrine-phospholipid interaction as well as the pharmacodynamic character of the drug.  相似文献   

5.
The ganglioside Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1) is an important receptor. We have previously identified GM1-binding peptides based on affinity selection from a random peptide library. In the present study, we determined the amino acids essential for binding GM1 and investigated the specific interaction with GM1 in the lipid membrane. Arginines and aromatic amino acids in the consensus sequence (W/F)RxL(xP/Px)xFxx(Rx/xR)xP contributed to the ability of the peptides to bind GM1. The peptide p3, VWRLLAPPFSNRLLP, having the consensus sequence, showed high affinity for GM1 with a dissociation constant of 1.2 microM. Furthermore, the density-dependent binding of p3 was investigated using mixed monolayers of GM1 and Glcbeta1-1'Cer (GlcCer). p3 binds preferentially to high-density GM1, and its interaction with GM1 was found to be cooperative based on a Hill plot. These results indicated that a lateral assembly of GM1 molecules was required for the recognition of carbohydrates by p3. The GM1-binding peptide played a role as a unique anti-GM1 probe differing from the cholera toxin B subunit or antibodies.  相似文献   

6.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

7.
Adsorption and aggregation of transformed peptides and proteins onto the cell membrane surface is commonly associated with forms of amyloidosis such as Alzheimer's disease and prion disease. To address dynamic features of these pathological phenomena molecularly, the in situ Ad-2alpha model peptide deposition on glycolipid-containing monolayers was studied by using a 9 MHz quartz-crystal microbalance (QCM). The Ad-2alpha peptide has two amphiphilic alpha-helix segments, each modified with a 1-adamantanecarbonyl group at the N-terminal as a hydrophobic defect. The peptide folds in a 2alpha-helix structure in the bulk solution. In the presence of mixed monolayers of glycolipids (GM1, asialo-GM1, GM3, or LacCer) and/or dipalmitoyl phosphatidylcholine (DPPC) laminated on the QCM plate, the peptide deposition and the conformational change to beta-structure on the monolayers were accelerated. The adsorption kinetics and the amount of Ad-2alpha were dependent on the sort and contents of the glycolipid in the DPPC matrix. Although the Ad-2alpha peptide adsorbs onto most of the glycolipid membranes as monolayer coverage, it adsorbed largely onto the GM1/DPPC (30/70 mol%) mixed monolayer with characteristic kinetic behaviors. The accumulation of beta-structured nonfibrous aggregations was confirmed by AFM and fluorescence microscopy with Thioflavin T (ThT).  相似文献   

8.
The association of neuropeptide Y (NPY) with air-water interfaces and with phospholipid monolayers on water subphases and on physiological buffer has been investigated. Surface pressure (pi) versus molecular area (A) relations of the peptide at water surfaces depend on the concentration of the spreading solutions. Independent of that concentration, they show a transition from a low-density state to a high-density state at pi approximately 12 mN/m. Similar features are observed in the NPY adsorption to preformed monolayers (Deltapi(t --> infinity) as a function of pii = pi (t = 0) where t = 0 signifies the time of peptide injection). The transition is also observed in cospread lipid-NPY monolayers and is interpreted as the exclusion of the peptide from the surface layer. The reproducibility of the isotherms after expansion suggests that cospread lipid-peptide monolayers are thermodynamically stable and that the peptide remains associated with the monolayer after exclusion from the lipid surface. A comparison of NPY association with zwitterionic and with anionic lipids as well as a comparison of the interactions on pure water and on physiological buffer suggest that electrostatic attraction plays a major role in the energetics of peptide binding to the membrane surface. Dual label fluorescence microscopy demonstrates that the peptide associates preferentially with the disordered, liquid condensed monolayer phase and also suggests that it self-aggregates upon exceeding a critical surface concentration. A NPY variant with a distorted alpha-helix interacts with the surface as strongly as the natural NPY but expands the monolayers more. This suggests that the helix motif in the peptide is more important for the interaction with the receptor than for binding of the peptide to the membrane surface. In context, these observations attribute a specific role to the membrane in funneling the signal peptide to its membrane receptor.  相似文献   

9.
Hydrophobic surfaces created by the adsorption of a monolayer of surfactants, such as CTAB or DODAB, to mica display long-range mutual attraction when placed in water. Initially, this attraction was considered to be due to hydrophobic interaction, but more careful measurements using AFM showed that the surfactant monolayer undergoes rearrangements to produce charged patches on the surface; therefore, the nature of the long-range interaction is due to the electrostatic interaction between patches. The monolayer rearrangement depends on the nature of the surfactant and its counterion. To study possible monolayer rearrangements in molecular detail, we performed detailed molecular dynamics computer simulations on systems containing a monolayer of surfactants RN(CH(3))(3)(+)Cl(-) (R indicates a saturated hydrocarbon chain) adsorbed on a mica surface and immersed in water. We observe that when chain R is 18 carbons long the monolayer rearranges into a micelle but it remains a monolayer when the chain contains 24 carbons.  相似文献   

10.
Three different methods to investigate the activity of a protein kinase (casein kinase, CK2) are described. The phosphorylation of the sequence-specific peptide (1) by CK2 was monitored by electrochemical impedance spectroscopy (EIS). Phosphorylation of the peptide monolayer assembled on a Au electrode yields a negatively charged surface that electrostatically repels the negatively charged redox label [Fe(CN)6]3-/4-, thus increasing the interfacial electron-transfer resistance. The phosphorylation process by CK2 is further amplified by the association of the anti-phosphorylated peptide antibody to the monolayer. Binding of the antibody insulates the electrode surface, thus increasing the interfacial electron-transfer resistance in the presence of the redox label. This method enabled the quantitative analysis of the concentration of CK2 with a detection limit of ten units. The second method employed involved contact-angle measurements. Although the peptide 1-functionalized electrode revealed a contact angle of 67.5 degrees , phosphorylation of the peptide yielded a surface with enhanced hydrophilicity, 36.8 degrees. The biocatalyzed cleavage of the phosphate units with alkaline phosphatase regenerates the hydrophobic peptide monolayer, contact angle 55.3 degrees . The third method to characterize the CK2 system involved chemical force measurements between the phosphorylated peptide monolayer associated with the Au surface and a Au tip functionalized with the anti-phosphorylated peptide antibody. Although no significant rupture forces existed between the modified tip and the 1-functionalized surface (6+/-2 pN), significant rupture forces (multiples of 120+/-20 pN) were observed between the phosphorylated monolayer-modified surface and the antibody-functionalized tip. This rupture force is attributed to the dissociation of a simple binding event between the phosphorylated peptide and the fluorescent antibody (Fab) binding region.  相似文献   

11.
DNA interacts with insoluble monolayers made of cationic amphiphiles as well as with monolayers of zwitterionic lipids in the presence of divalent ions. Binding to dioctadecyldimethylammonium bromide (DODAB) or distearoyl-sn-glycero-3-phosphocholine (DSPC) monolayers in the presence of calcium is accompanied by monolayer expansion. For the positively charged DODAB monolayer, this causes a decrease of surface potential, while an increase is observed for the DSPC monolayers. Binding to dipalmitoyl-sn-glycero-3-phosphocholine preserves most of the liquid expanded-liquid condensed coexistence region. The liquid condensed domains adopt an elongated morphology in the presence of DNA, especially in the presence of calcium. The interaction of DNA with phospholipid monolayers is ion specific: the presence of calcium leads to a stronger interaction than magnesium and barium. These results were confirmed by bulk complexation studies.  相似文献   

12.
Two-component Langmuir monolayers formed on 0.02M Tris buffer solution (pH 7.4) with 0.13M NaCl at 298.2K were investigated for two different fluorinated-hydrogenated hybrid amphiphiles (F6PH5PPhNa and F8PH5PPhNa or F6 and F8, respectively) with DPPC. Surface pressure (pi), surface potential (DeltaV) and dipole moment (mu( perpendicular)) as a function of molecular surface area (A) were measured by employing the Whilhelmy method and an ionizing electrode method. From the A- and DeltaV-X(F6) (or X(F8)) curves, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined as a function of surface mole fraction (X(Fn)) at discrete surface pressures. Then, the behavior of occupied surface areas and surface potentials of the respective components could be made clearer. Compressibility (C(s)), elasticity (C(s)(-1)), and excess Gibbs energy (DeltaG((ex))) as a function of X(F6) (or X(F8)) were estimated at definite pressures. These physico-chemical parameters were found to reflect the mechanical strength of monolayer films formed. The regular solution theory being applied to DeltaG((ex)), the activity coefficients (f) as well as the interaction parameter (I(p)) between DPPC and two hybrid amphiphiles in the binary monolayers were evaluated. I(p) values thus obtained indicated that F8 molecules interact more strongly with DPPC molecules than F6. Moreover, in order to better understand the morphological monolayer state, Langmuir-Blodgett (LB) films made from DPPC and fluorinated-hydrogenated hybrid amphiphiles were examined by atomic force microscopy (AFM). The miscibility of the two components in the monolayer state is evidenced by these thermodynamic quantities and AFM observations. Furthermore, AFM images demonstrated that F8 could more effectively disperse the ordered domains of DPPC than F6.  相似文献   

13.
Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an α-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.  相似文献   

14.
Sowole MA  Kraatz HB 《The Analyst》2012,137(5):1120-1124
Here we lay the ground work for the detection of hepatitis C viral NS3-4A protease exploiting peptide-protein interaction. The NS3-4A protease is inhibited by N-terminal cleavage products. Our approach is based on the formation of a self-assembled monolayer (SAM) of a ferrocene amino acid derivative on an electrode surface. A short NS3-4A specific inhibitory peptide (Asp-Glu-Ile-Val-Pro-Nva) was then covalently attached to the electrode surface. The interaction of the peptide, through the C-terminal, with the protein was quantified using electrochemical techniques. The systems exhibit a linear relationship between the measured signal and NS3-4A concentration in the range of 10-100 pM with a detection limit of 5 pM.  相似文献   

15.
The kinetics and the thermodynamics of melanin concentrating hormone (MCH) adsorption, penetration, and mixing with membrane components are reported. MCH behaved as a surface active peptide, forming stable monolayers at a lipid-free air-water interface, with an equilibrium spreading pressure, a collapse pressure, and a minimal molecular area of 11 mN/m, 13 mN/m, and 140 A (2), respectively. Additional peptide interfacial stabilization was achieved in the presence of lipids, as evidenced by the expansion observed at pi > pi sp in monolayers containing premixtures of MCH with zwitterionic or charged lipids. The MCH-monolayer association and dissociation rate constants were 9.52 x 10 (-4) microM (-1) min (-1) and 8.83 x 10 (-4) min (-1), respectively. The binding of MCH to the dpPC-water interface had a K d = 930 nM at 10 mN/m. MCH penetration in lipid monolayers occurred even up to pi cutoff = 29-32 mN/m. The interaction stability, binding orientation, and miscibility of MCH in monolayers depended on the lipid type, the MCH molar fraction in the mixture, and the molecular packing of the monolayer. This predicted its heterogeneous distribution between different self-separated membrane domains. Our results demonstrated the ability of MCH to incorporate itself into biomembranes and supports the possibility that MCH affects the activity of mechanosensitive membrane proteins through mechanisms unrelated with binding to specific receptors.  相似文献   

16.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

17.
The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H(2)/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determined. The case of the H(2)/NaCl(001) monolayer for 26 meV scattering energy is computationally challenging and difficult because it has a much more corrugated surface than those in the previous applications for triangular lattices. This requires a large number of coupled channels for convergence in the wave-packet-scattering calculation and a long series of Fourier amplitudes to represent the helium-target potential energy surface. A modified series is constructed in which a truncated Fourier expansion of the potential is constrained to give the exact value of the potential at some key points and which mimics the potential with fewer Fourier amplitudes. The shear horizontal phonon mode is again accessed by the helium scattering for small misalignment of the scattering plane relative to symmetry axes of the monolayer. For 1° misalignment, the calculated intensity of the longitudinal acoustic phonon mode frequently is higher than that of the shear horizontal phonon mode in contrast to what was found at scattering energies near 10 meV for triangular lattices of Ar, Kr, and Xe on Pt(111).  相似文献   

18.
A synthetic peptidolipid consisted of a hydrocarbon chain with a chain length of C18 and a peptide moiety of IIGLM terminated with an amine group, designated as C18IIGLM-NH2, has been employed as a biomimic model compound of amyloid peptide for exploring molecular interaction and orientation with the use of the Langmuir monolayer and Langmuir-Blodgett film techniques. Inspired by a well-known fact that a stain reagent, Congo red (CR), binds well to the amyloid-mimic part (IIGLM), inhibition of molecular aggregation of C18IIGLM-NH2 by interaction with CR was expected, and it has been investigated by use of surface pressure-area isotherm, surface dipole moment-area isotherm, Brewster-angle microscopy, and UV-vis/infrared spectroscopies. It has been revealed that monomeric CR molecules whose long axis is parallel to the Langmuir monolayer surface are penetrating the C18IIGLM-NH2 Langmuir monolayer, which plays a role of inhibition of molecular aggregation via hydrogen bonding.  相似文献   

19.
Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 +/- 0.05 and 0.16 +/- 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.  相似文献   

20.
The siliceous frustules of diatom algae contain complex proteins known as silaffins, which consist of a peptide chain with grafted polyamine chains. These polyamines contain twenty or more nitrogen atoms with trimethylene groups between the nitrogens. We synthesized a set of polymers containing grafted long-chain polyamine fragments by using acryloyl chloride(ACh) polymers and activated acrylic acid copolymers as the starting materials. The new polymers contained 0.05 mol%-3.2 mol% of polyamine chains, which corresponded to 0.06-3.56 mmol·g~(-1) amine groups. The new amine-containing polymers formed complexes with short(19-21-mer)deoxyribonucleic acid(DNA) and ribonucleic acid(RNA) strands, and these complexes penetrated into model yeast cells and A549 lung cancer cell. This study demonstrates the potential of these species based on long-chain polyamines to serve as novel gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号