首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes the development of a remote millimetre wave (MMW) spectrometer capable of operation in the 57-66, 114-128 and 171-189 GHz bands. A 9.5-10.5 GHz signal from a yttrium iron garnet (YIG) source is carried via an infrared (IR) laser down a 1 km fibre-optic cable using a high-speed communications modulator. The 6th harmonic of the transmitted microwave signal is generated directly with an active sextrupler, which permits working in the 57-66 GHz band. For operation at 114-128 and 171-189 GHz, the 57-66 GHz output from the sextrupler is doubled or tripled by a further harmonic generator. Absorption line strength measurements and hence sample concentration determinations are undertaken using a Fabry-Perot cavity absorption cell. The spectroscopic data are recovered from the remote spectrometer by transmitting the rectified signal back over a further fibre-optic cable. Also described are the methods of cavity stabilisation and control across this fibre optic network. Oxygen determinations in the 57-66 and 114-128 GHz bands are performed to evaluate the performance of the spectrometer. A determination of water vapour in air at atmospheric pressure, at 183 GHz, is also presented, over a range of ∼5×10−5 to ∼0.025 volume fraction in air.  相似文献   

2.
The absolute determination of the millimetre wave power absorption coefficient of gas samples in a Fabry-Perot cavity whose resonant frequency is synchronised to a millimetre wavelength source is described. A theoretical treatment valid for pressures >200 Pa is developed. Absolute absorption coefficient measurements have been made on lines of SO2 in the 50-60 GHz region that compared favourably with literature values. A calibration curve for SO2 using the 59224.84 MHz line at 667 Pa over the concentration range 1-100% in N2 has been produced. This technique could be especially useful for remote monitoring and process control applications because it is not necessary to scan the spectral line in order to determine the concentration of a species. The source runs at a single frequency coinciding with the peak of a millimetre wavelength (MMW) absorption line. This means that the technique could operate effectively at pressures up to and above atmospheric without the need for sophisticated MMW sources that can sweep across a wide frequency band.  相似文献   

3.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

4.
A method for the synthesis of optically pure C60 derivatives containing one or two d-galactose or d-glucose units is described. It involves the synthesis of sugar-malonate derivatives followed by a cyclopropanation reaction with C60. The solvent dependence of the photophysical properties of the methano[60]fullerene-sugar derivatives was studied using nanosecond laser flash photolysis coupled with kinetic UV-vis absorption spectroscopy and time-resolved singlet oxygen luminescence measurements. The triplet properties of these fullerenes, including transient absorption spectra, molar absorption coefficients and quantum yield for the photosensitised production of 1O2 were determined in toluene, benzonitrile and acetonitrile solutions. The transient absorption spectral profiles are solvent independent although small differences are observed in the transient absorption maximum: 720±5 nm for toluene, 710±5 nm for benzonitrile and 700±5 nm for acetonitrile. Triplet state molar absorption coefficients (εT) of C60 derivatives vary from 9456±2090 M−1 cm−1, for compound 10 in toluene, and 15,272±4462 M−1 cm−1, for compound 6 in acetonitrile. Triplet state lifetimes (τT) for methano[60]fullerene-sugar derivatives, under our experimental conditions, are similar in toluene or benzonitrile solutions (47.5±1.1 μs≤τT≤51.4±2.0 μs) but are lower in acetonitrile solutions (31.8±0.6 μs≤τT≤43.0±1.1 μs). Toluene and benzonitrile solutions of C60 derivatives have ΦΔ close to unity.  相似文献   

5.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

6.
The collisional broadening and shift rate coefficients of the “forbidden“ 6p2 3P0 → 6p2 3P1 transition in lead were determined by diode laser absorption measurements performed simultaneously in two resistively heated hot-pipes. One hot-pipe contained Pb vapor and noble gas (Ar or He) at low pressure, while the other was filled with Pb and noble gas at variable pressure. The measurements were performed at temperatures of 1220 K and 1290 K, i.e., lead number densities of 4.8 × 1015 cm− 3 and 1.2 × 1016 cm− 3. The broadening rates were obtained by fitting the experimental collisionally broadened absorption line shapes to theoretical Voigt profiles. The shift rates were determined by measuring the difference between the peak absorption positions in the spectra measured simultaneously in the heat pipe filled with noble gas at reference pressure and the one with noble gas at variable pressure. The following data for the broadening and shift rate coefficients due to collisions with Ar and He were obtained: γBAr = (3.4 ± 0.1) × 10− 10 cm3 s− 1, γBHe = (3.8 ± 0.1) × 10− 10 cm3 s− 1, γSAr = (− 7.3 ± 0.8) × 10− 11 cm3 s− 1, γSHe = (− 6.5 ± 0.7) × 10− 11 cm3 s− 1.  相似文献   

7.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

8.
Zhao YD  Bi YH  Zhang WD  Luo QM 《Talanta》2005,65(2):489-494
Direct electrochemistry of hemoglobin (Hb) is observed at carbon nanotube (CNT) interface. The adsorbing Hb can transfer electron directly at CNT interface compared with common carbon material. The heterogeneous electron transfer rate constant k of Hb can be calculated as 0.062 s−1, the transfer coefficient α is 0.21 and the average surface coverage of Hb on CNT surface is 3.58 × 10−9 ± 2.7 × 10−10 mol/cm2. It is found that the adsorbing Hb still keeps its catalytic activity to H2O2. This sensor was used to detect H2O2. The apparent Michaelis-Menten constant is calculated as 6.75 × 10−4 mol L−1.  相似文献   

9.
Thermal behavior, relative stability, and enthalpy of formation of α (pink phase), β (blue phase), and red NaCoPO4 are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO4 with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to α NaCoPO4 at 827 K with an enthalpy of phase transition of −17.4±6.9 kJ mol−1. α NaCoPO4 with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the β phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6±1.3 kJ mol−1. Enthalpy of formation from oxides of α, β, and red NaCoPO4 are −349.7±2.3, −332.1±2.5, and −332.3±7.2 kJ mol−1; standard enthalpy of formation of α, β, and red NaCoPO4 are −1547.5±2.7, −1529.9±2.8, and −1530.0±7.3 kJ mol−1, respectively. The more exothermic enthalpy of formation from oxides of β NaCoPO4 compared to a structurally related aluminosilicate, NaAlSiO4 nepheline, results from the stronger acid-base interaction of oxides in β NaCoPO4 (Na2O, CoO, P2O5) than in NaAlSiO4 nepheline (Na2O, Al2O3, SiO2).  相似文献   

10.
The determination of pKa value for the unstable chromium(VI) peroxide, CrO(O2)2(H2O) in aqueous solution is presented. The pKa value is found to be (1.55 ± 0.03). The kinetic decomposition of chromium(VI) peroxide is dependent on the concentration of hydrogen peroxide in the pH range between 2.5 and 4.0. We have proposed the possible explanation for the formation of triperoxo chromium complex of hydrogen peroxide which is dependent on decomposition. Activation of coordinate peroxide in chromium(VI) peroxide observed in the kinetic studies is by reduction of thiolato-cobalt(III) complex. The rate constant (M−1 s−1, 15 °C) for the oxygen atom transfer reaction from CrO(O2)2(OH) to (en)2Co(SCH2CH2NH2)2+ is found to be (25.0 ± 1.3).  相似文献   

11.
The main factor governing the oxygen ionic conductivity in apatite-type La10−xSi6−yAlyO27−3x/2−y/2 (x=0-0.33; y=0.5-1.5) is the concentration of mobile interstitials determined by the total oxygen content. The ion transference numbers, measured by modified faradaic efficiency technique, vary in the range 0.9949-0.9997 in air and increase on reducing oxygen partial pressure due to decreasing p-type electronic conduction. The activation energies for ionic and hole transport are (56-67)±3 kJ/mol and (57-100)±8 kJ/mol, respectively. Increasing oxygen content leads to higher hole conduction in oxidizing atmospheres and promotes minor oxygen losses from the lattice when the oxygen pressure decreases, although the overall level of ionic conductivity is almost constant in the p(O2) range from 50 kPa down to 10−16 Pa. Under reducing conditions at temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics results in a moderate decrease of the conductivity with time. This suggests that the operation of electrochemical cells with silicate-based solid electrolytes should be limited to the intermediate-temperature range, such as 800-1000 K, where the ionic transport in most-conductive apatite phases containing 26.50-26.75 oxygen atoms per unit formula is higher than that in stabilized zirconia. The average thermal expansion coefficients of apatite ceramics, calculated from dilatometric data in air, are (8.7-10.8)×10−6 K−1 at 300-1300 K.  相似文献   

12.
A microwave-assisted persulfate oxidation method followed by ion chromatographic determination of nitrate was developed for total nitrogen determination in atmospheric wet and dry deposition samples. Various operating parameters such as oxidation reagent concentrations, microwave power, and extraction time were optimized to maximize the conversion of total nitrogen to nitrate for subsequent chemical analysis. Under optimized conditions, 0.012 M K2S2O8 and 0.024 M NaOH were found to be necessary for complete digestion of wet and dry deposition samples at 400 W for 7 min using microwave. The optimized extraction method was then validated by testing different forms of organic nitrogen loaded to pre-baked filter substrates and NIST SRM 1648 (urban particulate matter), and satisfactory results were obtained. In the case of wet deposition samples, standard addition experiments were performed. The suitability of the method for real-world application was assessed by analyzing a number of wet and dry deposition samples collected in Singapore during the period of March-April 2007. The organic nitrogen content was 15% (wet) and 30% (dry) of the total nitrogen. During the study period, the estimated wet fluxes for nitrate (NO3), ammonium (NH4+), organic nitrogen (ON), and total nitrogen (TN) were 16.1 ± 6.5 kg ha−1 year−1, 11.5 ± 5.7 kg ha−1 year−1, 3.8 ± 1.5 kg ha−1 year−1and 31.5 ± 13.2 kg ha−1 year−1, respectively, while the dry fluxes were 2.5 ± 0.8 kg ha−1 year−1, 1.4 ± 0.9 kg ha−1 year−1, 2.3 ± 1.4 kg ha−1 year−1 and 7.5 ± 2.6 kg ha−1 year−1, respectively.  相似文献   

13.
Gendi Jin 《Talanta》2009,80(2):858-1080
A new petentiometric method to determine peroxide hydrogen and glucose had been studied. This method had been applied on the petentiometric determination of peroxide hydrogen and glucose in the total ionic strength adjustment buffer (TISAB) (pH 7.5) solution with the glassy electrode modified by the calix[4]arene. The glassy carbon electrode covered with the calix[4]arene depended on the H2O2 concentration in the range of log[H2O2] from −3.3 to −1.2 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 65.6 ± 3 mV and the detection limit of peroxide hydrogen was 4.0 × 10−5 mol L−1. The glassy carbon electrode covered with the calix[4]arene depended on the glucose concentration in the range of log[glucose] from −3.6 to −2.8 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 50.2 ± 2 mV and the detection limit of glucose was 2.0 × 10−5 mol L−1. The electrode had the good selectivity, sensitivity, stability and repeatability.  相似文献   

14.
New sensing films have been developed for the detection of molecular oxygen. These films are based on luminescent Ir(III) dyes incorporated either into polystyrene (with and without plasticizer) or metal oxide, nanostructured material. The preparation and characterization of each film have been investigated in detail. Due to their high sensitivity for low oxygen concentration, the parameters pO2(S=1/2) and ΔI1% have been also evaluated in order to establish the most sensitive membrane for controlling concentrations between 0 and 10% and low oxygen concentrations (lower than 1%), respectively. The results show that the use of nanostructured material increased the sensitivity of the film; the most sensitive membrane for controlling O2 between 0 and 10% is based on N1001 immobilized in AP200/19 (ksv = 2848 ± 101 bar−1 and pO2(S=1/2)=0.0006), and the complex N969 incorporated into AP200/19 seems to be the most suitable for applications in oxygen trace sensing (ΔI1% = 93.13 ± 0.13%).  相似文献   

15.
Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi4Ta2O11, Bi7Ta3O18 and Bi3TaO7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm=445.8+0.005451T−7.489×106/T2 J K−1 mol−1, Cpm=699.0+0.05276T−9.956×106/T2 J K−1 mol−1 and Cpm=251.6+0.06705T−3.237×106/T2 J K−1 mol−1 for Bi3TaO7, Bi4Ta2O11 and for Bi7Ta3O18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S°m(298.15 K)=449.6±2.3 J K−1 mol−1 for Bi4Ta2O11, S°m(298.15 K)=743.0±3.8 J K−1 mol−1 for Bi7Ta3O18 and S°m(298.15 K)=304.3±1.6 J K−1 mol−1 for Bi3TaO7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

16.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

17.
A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)2]Br2 was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, α-SiMo12O404− and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/α-SiMo12O404− electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/α-SiMo12O404− modified electrodes shows excellent electrocatalytic activity toward reduction H2O2 and BrO3 at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(±0.2) × 103 M−1 s−1 and 3.0(±0.10) × 103 M−1 s−1, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM−1, 10 nM-20 μM, 1 nM, 5.5 nA nM−1 and 10 nM-18 μM, respectively.  相似文献   

18.
This paper describes the use of dilute nitric acid for the extraction and quantification of arsenic species. A number of extractants (e.g. water, 1.5 M orthophosphoric acid, methanol-water and dilute nitric acid) were tested for the extraction of arsenic from marine biological samples, such as plants that have proved difficult to quantitatively extract. Dilute 2% (v/v) nitric acid was found to give the highest recoveries of arsenic overall and was chosen for further optimisation. The optimal extraction conditions for arsenic were 2% (v/v) HNO3, 6 min−1, 90 °C. Arsenic species were found to be stable under the optimised conditions with the exception of the arsenoriboses which degraded to a product eluting at the same retention time as glycerol arsenoribose. Good agreement was found between the 2% (v/v) HNO3 extraction and the methanol-water extraction for the certified reference material DORM-2 (AB 17.1 and 16.2 μg g−1, respectively, and TETRA 0.27 and 0.25 μg g−1, respectively), which were in close agreement with the certified concentrations of AB 16.4 ± 1.1 μg g−1 and TETRA 0.248 ± 0.054 μg g−1.To preserve the integrity of arsenic species, a sequential extraction technique was developed where the previously methanol-water extracted pellet was further extracted with 2% (v/v) HNO3 under the optimised conditions. Increases in arsenic recoveries between 13% and 36% were found and speciation of this faction revealed that only inorganic and simple methylated species were extracted.  相似文献   

19.
Two analytical methods for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry without prior sample digestion have been compared: direct solid sampling analysis (SS) and slurry sampling (SlS). Besides the conventional modifier mixture of palladium and magnesium nitrates (10 μg Pd + 3 μg Mg), 0.05% (v/v) Triton X-100 has been added to improve the penetration of the modifier solution into the solid sample, and 0.1% H2O2 in order to promote an in situ digestion for SS. For SlS, 30 μg Pd, 12 μg Mg and 0.05% (v/v) Triton X-100 have been used as the modifier mixture. Under these conditions, and using a pyrolysis temperature of 800 °C, essentially no background absorption was observed with an atomization temperature of 1600 °C. About 2 mg of sample have been typically used for SS, although as much as 3-5 mg could have been introduced. In the case of SlS multiple injections had to be used to achieve the sensitivity required for this determination. Calibration against aqueous standards was feasible for both methods. The characteristic mass obtained with SS was 0.6 pg, and that with SlS was 1.0 pg. The limits of detection were 0.4 and 0.7 ng g−1, the limits of quantification were 1.3 and 2.3 ng g−1 and the relative standard deviation (n = 5) was 6-16% and 9-23% for SS and SlS, respectively. The accuracy was confirmed by the analysis of certified reference materials. The two methods were applied for the determination of cadmium in six wheat flour samples acquired in supermarkets of different Brazilian cities. The cadmium content varied between 8.9 ± 0.5 and 13 ± 2 ng g−1 (n = 5). Direct SS gave results similar to those obtained with SlS using multi-injections; the values of both techniques showed no statistically significant difference at the 95% confidence level. Direct SS was finally adopted as the method of choice, due to its greater simplicity, the faster speed of analysis and the better figures of merit.  相似文献   

20.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号