首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
A new ternary polymer electrolyte based on thermally cross-linked poly(urethane acrylate) (PUA), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-butyl-N-methylpyrrolidinium TFSI (PYR14TFSI) was developed and tested for application in LMP batteries. The polymer electrolyte was a transparent yellow self-standing material with quite good mechanical properties, i.e., comparable to that of a flexible rubber. The room temperature ionic conductivity of the dry polymer electrolyte was found to be as high as 0.1 mS cm−1 for the compound containing 40 wt% of ionic liquid (PYR14TFSI) and a O/Li ratio of 15/1 (Li+ from LiTFSI). The thermal analysis of the new cross-linked electrolyte showed that it was homogeneous, amorphous and stable over a wide temperature range extending from −40 °C to 100 °C. The homogeneity of the polymer electrolyte was also confirmed by SEM analysis.  相似文献   

2.
Copolymer, poly(acrylonitrile-co-methyl methacrylate) (P(AN-co-MMA)), was synthesized by solution polymerization with different mole ratios of monomers, acrylonitrile (AN) and methyl methacrylate (MMA). Polyethylene (PE) supported copolymer and gel polymer electrolyte (GPE) were prepared with this copolymer and their performances were characterized with FTIR, TGA, SEM, and electrochemical methods. It is found that the GPE using the PE-supported copolymer with AN to MMA = 4:1 (mole) exhibits an ionic conductivity of 2.06 × 10−3 S cm−1 at room temperature. The copolymer is stable up to 270 °C. The PE-supported copolymer shows a cross-linked porous structure and has 150 wt% of electrolyte uptake. The GPE is compatible with anode and cathode of lithium ion battery at high voltage and its electrochemical window is 5.5 V (vs. Li/Li+). With the application of the PE-supported GPE in lithium ion battery, the battery shows its good rate and initial discharge capacity and cyclic stability.  相似文献   

3.
Microporous poly(vinylidene fluoride)/polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PVDF/PEO-PPO-PEO, or PVDF/F127) blend membranes were prepared via thermally induced phase separation (TIPS) process using sulfolane as the diluent. Then they were soaked in a liquid electrolyte to form polymer electrolytes. The effects of F127 weight fraction on the morphology, crystallinity and porosity of the blend membranes were studied. It was found that both electrolyte uptake of blend membranes and ionic conductivity of corresponding polymer electrolytes increased with the increase of F127 weight fraction. The maximum ionic conductivity was found to reach 2.94 ± 0.02 × 10−3 S/cm at 20 °C. Electrochemical stability window was stable up to 4.7 V (vs. Li+/Li). The testing results indicated that the PVDF/F127 blend membranes prepared via TIPS process can be used as the polymer microporous matrices of polymer electrolytes for lithium ion batteries.  相似文献   

4.
Solid electrolyte materials have the potential to improve performance and safety characteristics of batteries by replacing conventional solvent-based electrolytes. For this purpose, new candidate single ion conductor self-standing networks were synthesized with trifluoromethane-sulfonylimide (TFSI) lithium salt based monomer using poly(ethyleneglycol) dimethacrylate (PEGDM 750) as crosslinker. The highest ionic conductivity was 3.4 × 10−7 S cm−1 at 30 °C in the dry state. Thermal and mechanical analyses showed good thermal stability up to 190 °C and rubbery-like properties at ambient temperature. A direct relationship between ionic conductivity and glassy or rubbery state of the membranes was found. Vogel–Tammann–Fulcher behavior was observed in the dry state which is consistent with a lithium conductivity correlated with polymer chain mobility. By swelling the network in propylene carbonate, a self-standing electrolyte gel could be obtained with an ionic conductivity as high as 1 × 10−4 S cm−1 at 30 °C. The individual diffusion coefficients of mobile species in the material (19F and 7Li) were measured and quantified using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Diffusion coefficients for the most mobile components of the lithium cations and fluorinated anions at 100 °C in dry membranes have been found to be 3.4 × 10−8 cm2 s−1 and 2.1 × 10−8 cm2 s−1 respectively.  相似文献   

5.
The new ramsdellite series LiTi2−yVyO4 (0≤y≤1) has been prepared by conventional solid state chemistry techniques and was characterized by X-ray powder diffraction and electron diffraction. To our knowledge, this is the first report on ramsdellites containing vanadium. The magnetic behaviour of these ramsdellites is strongly influenced by its vanadium content. In this sense, LiTi2O4 (y=0) exhibits metallic-like temperature independent paramagnetism, but d electrons tend to localize with increasing V content. LiTiVO4, though also paramagnetic, follows then the Curie-Weiss law. The crossover from delocalized to localized electrons is observed between compositions y=0.6 and 0.8. For y≥0.8 the magnetic results evidence an isovalent substitution mechanism of trivalent Ti by V. The electrochemical lithium intercalation and deintercalation chemistry of LiTi2−yVyO4 is grouped into two different operating voltage regions. Reversible lithium deintercalation of vanadium-substituted ramsdellite titanates LiTi2−yVyO4 in the high voltage range 2-3 V vs. Li occurs in two main steps, one at about 2 V and the other at about 3 V. The 3 V process capacity increases with the vanadium content, while the 2 V capacity decreases at the same time. The vanadium to titanium substitution rate in LiTi2O4 was found to be beneficial to the specific energy in as much as a 50% increase (1 V) of the working voltage is observed. On the other hand, reversible lithium intercalation in vanadium-substituted ramsdellite titanates LiTi2−yVyO4 in the low voltage range 1-2 V vs. Li occurs in one main single step, in which the capacity is not affected by the vanadium content, although vanadium-doping produces an improved capacity retention with an excellent cycling behaviour observed for y≤0.6.  相似文献   

6.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

7.
The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at −0.7 V versus SCE. The sensor presented better performance in 0.1 mol l−1 acetate buffer at pH 4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200 nmol l−1 was obtained with a sensitivity of 3.057 nA l nmol−1 cm−2. The detection limit for 4-NP determination was 7.5 nmol l−1. The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (± 0.7)%.  相似文献   

8.
Electrospun fibrous membranes of composites of polyvinylidene fluoride and polyacrylonitrile (PVdF–PAN–ESFMs) are prepared with different proportions of PAN (25, 50 and 75%, w/w). The morphology of the ESFMs is examined by field emission scanning electron microscopy (FESEM). FESEM image of PVdF–ESFM reveals that the fibers have uniform diameters and smooth surfaces. However, the fibers of PVdF–PAN–ESFMs are interconnected with large number of voids and cavities of different sizes. These voids are effectively utilized for the preparation of polymer electrolytes by loading lithium perchlorate dissolved in propylene carbonate. PVdF–PAN–ESFM with 25% PAN (designated as PVdF–PAN(25)–ESFM) could load a high amount of lithium salt with electrolyte uptake of more than 300%. PVdF–PAN(25)–ESFM electrolyte exhibits a high conductivity of 7.8 mS cm−1 at 25 °C and electrochemically stable up to 5.1 V. Also, the addition of PAN into PVdF decreases the interfacial resistance with lithium electrode. PVdF–PAN–ESFM electrolytes have complementary advantageous characteristics of PVdF and PAN. The promising results reported here clearly indicate that polymer electrolytes based on PVdF–PAN–ESFMs are most suited for lithium batteries.  相似文献   

9.
The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO2 and the B-site mixed magnetic delafossite AgCu0.5Mn0.5O2 were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO2 and AgCu0.5Mn0.5O2 display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 μV/K and conductivity values of σ=3.2×10−1 and 1.8×10−4 S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO2 is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO2 shows a solid solution domain between x=0 and 0.8Li+ followed by a plateau nearby 1.7 V (vs. Li+/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu0.5Mn0.5O2 also exhibits Li+/Ag+ displacement reaction in a comparable potential range than AgCuO2; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO2 and AgCu0.5Mn0.5O2 provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li+/Li), respectively, with no evidence of a new defined phases.  相似文献   

10.
A novel kind of sandwiched polymer membrane was prepared, which consists of two outer layers of electrospun poly(vinyl difluoride) (PVDF) fibrous films and one inner layer of poly(methyl methacrylate) (PMMA) film. Its characteristics were investigated by scanning electron microscopy and X-ray diffraction. The membrane can easily absorb non-aqueous electrolyte to form gelled polymer electrolytes (GPEs). The resulting gelled polymer electrolytes had a high ionic conductivity up to 1.93 × 10−3 S cm−1 at room temperature, and exhibited a high electrochemical stability potential of 4.5 V (vs. Li/Li+). It is of great potential application in polymer lithium-ion batteries.  相似文献   

11.
The isostructural Heusler phases LiRh2Si and LiRh2Ge have been synthesized from the elements and an excess of lithium at 1000 °C. Both materials adopt the CuMn2Al crystal structure, space group Fm−3m (No. 225) with the room temperature lattice parameter a=5.747(1) Å [Vol=189.866(1) Å3] and a=5.847(1) Å [Vol=199.88(6) Å3] for LiRh2Si and LiRh2Ge, respectively. X-ray analyses suggest mixed site occupancy of the form Li1−xRh2Si1+x (x<0.4), but not for LiRh2Ge. Both materials are diamagnetic, χmol(LiRh2Si)=−6×10−5 cm3(mole)−1 and χmol(LiRh2Ge)=−10×10−5 cm3(mole)−1 and metallic with room temperature resistivities of approximately 19 and 32 μΩ cm, respectively. These properties are consistent with the calculated electronic structure.  相似文献   

12.
The physical and electrolytic properties of difluorinated dimethyl carbonate (DFDMC) synthesized using F2 gas (direct fluorination) were examined. The dielectric constant and viscosity of DFDMC are higher than those of monofluorinated dimethyl carbonate (MFDMC) and dimethyl carbonate (DMC). The oxidative decomposition voltage of DFDMC is higher than those of DMC and MFDMC. The specific conductivity in DFDMC solution is considerably lower than those in MFDMC and DMC solutions. The ethylene carbonate (EC)-DFDMC equimolar binary solution containing 1 mol dm−3 LiPF6 shows a moderate conductivity of 6.91 mS cm−1 at 25 °C. The lithium electrode cycling efficiency (charge-discharge coulombic cycling efficiency of lithium electrode) in EC-DFDMC equimolar binary solution containing 1 mol dm−3 LiPF6 is higher than 80%. The EC-DFDMC solution is a good electrolyte for rechargeable lithium batteries.  相似文献   

13.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

14.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

15.
The Brønsted acid-base polymer electrolyte membrane was prepared by entrapping imidazole in sulfonated poly(phenylene oxide) at the molar ratio of Im/SPPO = 2:1. The hybrid showed a high thermal stability up to 200 °C and peroxide tolerance. Differential scanning calorimetry shows that glass transition temperature is 232 °C. The conductivity increases with temperature exceeding 10−3 S/cm above 120 °C and a high conductivity of 6.9 × 10−3 S/cm was obtained at 200 °C under 33% RH conditions.  相似文献   

16.
A green BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte layer was deposited on porous anode substrate (BZCY:NiO = 35:65, in weight ratio) by a suspension spray. In this process, the suspension was prepared by directly ball-milling the mixed BaCO3, CeO2, ZrO2 and Y2O3 powders in ethanol for 24 h. Then the bi-layers were co-sintered at 1400 °C for 5 h in air to obtain dense and uniform electrolyte membrane in the thickness of 10 μm. With Nd0.7Sr0.3MnO3−δ cathode, a fuel cell was assembled. It was tested from 600 °C to 700 °C using humid hydrogen as fuel and air as oxidant. The cell at 700 °C exhibited 1.02 V for open circuit voltage (OCV), 450 mW/cm2 for peak output and 0.18 Ω cm2 for electrode polarizations under open circuit conditions, respectively. The results indicate that it is feasible to fabricate thin electrolyte membrane for solid oxide fuel cells (SOFCs) by this simple, cost-effective and efficient technique.  相似文献   

17.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

18.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

19.
The structure of chitosan contains the amine group that can act as electron donors. Complexation between chitosan and the salt can be proven by infrared and X-ray photoelectron spectroscopy methods. The NH2, NH3+ and OC-NHR vibrations which can be observed at 1590, 1560 and 1650 cm−1 shift to lower wave numbers when the complexes are formed. The after deconvolution Li 1s core level spectrum of the chitosan-salt complexes can contain several gaussian components one of which has a binding energy peak at 55.2 eV which signifies Li-N interaction. The component that peaks at ∼403 eV in the N 1s core level spectrum complements the proof of N-Li interaction. The highest conductivity achieved for a plasticized chitosan-salt complex is of the order 10−6 S/cm using lithium acetate as the doping salt. Transference number studies prove that this material is ionic conductor and from transient ionic current studies that mobility of the ions is of the order of 10−4 cm2/V s.  相似文献   

20.
LiMF6 (M = Ta, Nb) was prepared by the reaction between LiF and MF5 (M = Ta, Nb) in F2 gas. Pure LiMF6 (M = Ta, Nb) salts were obtained by using the reaction at temperatures higher than 473 K under 80 kPa (F2) for 24 h. The x values in LiMFx (M = Ta, Nb) were confirmed as 5.7-6.0 by XRD-Rietveld analysis. Results showed that LiMF6 (M = Ta, Nb) has a trigonal structure (, Z = 3). The respective lattice parameters of LiTaF6 and LiNbF6 are a0 = 0.533 nm, c0 = 1.362 and a0 = 0.532 nm, c0 = 1.360. The equivalent conductivities of both LiMF6 (M = Ta, Nb) in propylene carbonate (PC) are equal at 15.2 Ω−1 cm2 mol−1 at 0.01 mol dm−3. The electrochemical potential window of TaF6 is 7.0 V, which is 0.4 and 0.2 V wider, respectively, than those of BF4 and PF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号