首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of α,β‐unsaturated ketones with cerium (IV) sulfate tetrahydrate [Ce(SO4)2·4H2O, CS] in acetic acid gave the corresponding β‐acetoxy ketones. In the case of 2‐cyclohexen‐1‐one with CS in acetic acid, benzobicyclo[2.2.2]octen‐2‐one was obtained. The reaction mechanism also was proposed. Moreover, we report the aromatization and esterification of (R)‐(?)‐carvone by CS in acetic acid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In the past decade, more than 100 different cathinone derivatives slopped over entire Europe due to their enormous popularity. Generally, these novel psychoactive substances are easily available via the internet. This fact leads to various social problems, since cathinones are substances with consciousness‐changing effects and are mainly misused for recreational matters by their consumers. Cathinones possess a chiral center including two enantiomeric forms with potentially different pharmacological behavior. This fact makes analytical method development regarding their chiral separation indispensable. In this study, a chiral capillary zone electrophoresis method for the enantioseparation of 61 cathinone and pyrovalerone derivatives was developed by means of four different β‐cyclodextrin derivatives. As chiral selectors, native β‐cyclodextrin as well as three of its derivatives namely acetyl‐β‐cyclodextrin, 2‐hydroxypropyl‐β‐cyclodextrin, and carboxymethyl‐β‐cyclodextrin were used. The cathinone and pyrovalerone derivatives were either purchased in internet stores or seized by police. As a result, overall 58 of 61 studied substances were partially or baseline separated by at least one of the four chiral selectors using 10 mM of β‐cyclodextrin derivative in a 10 mM sodium phosphate buffer (pH 2.5). Furthermore, the method was found to be suitable for simultaneous enantioseparations, for enantiomeric purity checks and to differentiate between positional isomers. Moreover, an intra‐ and an interday validation was performed successfully for each chiral selector to prove the robustness of the method.  相似文献   

3.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

4.
A quantum chemical study of several complex monocyclic 4‐benzoyl‐4‐phenyl‐β‐lactam derivatives was carried out using cyclobutane, azetidine, 2‐azetidinone, 1‐methyl‐2‐azetidinone, and 3‐methyl‐2‐azetidinone as model compounds. The optimum geometry was obtained for the different conformations. The planarity of the ring was discussed in terms of the influence of the substituents on the amide resonance. To better analyze the amide resonance and the activity of the β‐lactam ring, a vibrational study was also carried out. To examine the influence of solvent polarity on the carbonyl bands, the Fourier transform–infrared (FT‐IR) spectra of the β‐lactam monocyclic derivatives were recorded in CCl4, C6H6, and CHCl3 solutions. The normal vibrations of the β‐lactam ring in the model compounds were characterized and used in the analysis of the β‐ring of more complex derivatives. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

5.
The study was focused on the structure–activity relationship of some newly synthesized hexacoordinated dimethyltin(IV) complexes of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones. These complexes were screened for their antibacterial activity against a Gram‐negative bacterium (Pseudomonas aeruginosa) and Gram‐positive bacteria (Streptomyces griseus, Staphylococcus aureus, Bacillus subtilis) and the results were compared with those of a standard antibacterial drug. Some of the complexes were also screened for their antifungal activity against various fungi (Aspergillus niger, A. flavus, Trichoderma viride, Fusarium oxysporum) and were found to be active. These new hexacoordinated complexes of dimethyltin(IV) were generated by reactions of dimethyltin(IV) dichloride and sodium salts of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones in 1:1:1 molar ratio in refluxing dry benzene. Plausible structures of these complexes were suggested with the aid of physicochemical and spectroscopic studies. 119Sn NMR spectral data revealed the presence of a hexacoordinated tin centre in these dimethyltin(IV) complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The photochemical behavior of various substituted epoxycarbonyl compounds consisting of more than one possible photo‐labile site (i.e. δ‐hydrogen, β‐hydrogen and epoxide ring) has been investigated. These compounds on photo‐irradiation produced the β‐hydroxyenones in an eco‐friendly green approach. Mechanistically, these photo‐transformations have been envisaged to occur via an intramolecular β‐hydrogen abstraction by the carbonyl group of benzoyl moiety to generate the 1,3‐biradical followed by epoxide ring opening that isomerizes into the photoproducts. The photolysis of the probed epoxy ketones didn’t furnish any photoproduct through δ‐hydrogen abstraction, whatsoever. This exclusive preference for β‐H abstraction over δ‐H abstraction by carbonyl group has been vindicated by the MM2 energy mini‐ mized program for the investigated photochemical substrates. The structures of these photoproducts were established from the analysis of their spectral parameters (IR, 1H/13C NMR and Mass) and single crystal X‐ray crystallography data.  相似文献   

7.
Conformational features of α,β‐disubstituted β2,3‐dipeptide models have been studied with quantum mechanics method. Geometries were optimized with the HF/6‐31G** method, and energies were evaluated with the B3LYP/6‐31G** method. Solvent effect was evaluated with the SCIPCM method. For (2S,3S)‐β2,3‐dipeptide model 1 , a six‐membered‐ring hydrogen bonded structure is most stable. However, the conformation corresponding to the formation of the 14‐helix is only about 1.7 kcal/mol less stable in methanol solution, indicating that the 14‐helix is favored if a (2S,3S)‐β2,3‐polypeptide contains more than 5 residues. On the other hand, the conformation corresponding to the formation of β‐sheet is most stable for (2R,3S)‐β2,3‐dipeptide model 2 , suggesting that this type of β‐peptides is intrinsically favored for the formation of β‐sheet secondary structure.  相似文献   

8.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

9.
We added parameters to the AMBER* force field to model cyclic β‐amino acid derivatives more accurately within the commonly used MacroModel program. In an effort to generate an improved treatment of cyclohexane and cyclopentane conformational preferences, carbon–carbon torsional parameters were modified and incorporated into a force field we call AMBER*C. Simulation of trans‐2‐aminocyclohexanecarboxylic acid (trans‐ACHC) and trans‐2‐aminocyclopentanecarboxylic acid (trans‐ACPC) derivatives using AMBER*C produces more realistic energy differences between (pseudo)diaxial and (pseudo)diequatorial conformations than does simulation using AMBER*. AMBER*C molecular dynamics simulations more accurately reproduce the experimental hydrogen‐bonding tendencies of simple diamide derivatives of trans‐ACHC and trans‐ACPC than do simulations using the AMBER* force field. More importantly, this modified force field allows accurate qualitative prediction of the helical secondary structures adopted by β‐amino acid homo‐oligomers. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 763–773, 2000  相似文献   

10.
The previously described chiral 2‐acyloxathianes 5 (Scheme I) are used in two different enantioselective syntheses of γ‐butyrolactones. In one synthesis, Grignard addition, cleavage and reduction to carbinols RR'C(OH)CH2OH is followed by tosylation, malonate homologation, lactonization, and removal of the carbomethoxy group to give optically active γ‐lactones. A modification of this synthesis (Scheme I) leads to optically active α‐methylene‐γ‐lactones. In the second synthesis, reaction of a bromomagnesium enolate with ketones 5 leads to β‐hydroxyesters, which, by appropriate sequences of reduction and cleavage (Scheme II) are converted to optically active α‐ or β‐hydroxy‐γ‐lactones.  相似文献   

11.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

12.
We report a novel 1:1 cocrystal of β‐alanine with dl ‐tartaric acid, C3H7NO2·C4H6O6, (II), and three new molecular salts of dl ‐tartaric acid with β‐alanine {3‐azaniumylpropanoic acid–3‐azaniumylpropanoate dl ‐tartaric acid–dl ‐tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ‐aminobutyric acid [3‐carboxypropanaminium dl ‐tartrate, C4H10NO2+·C4H5O6, (IV)] and dl ‐α‐aminobutyric acid {dl ‐2‐azaniumylbutanoic acid–dl ‐2‐azaniumylbutanoate dl ‐tartaric acid–dl ‐tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of dl ‐tartaric acid with glycine, (I), β‐alanine, (II) and (III), GABA, (IV), and dl ‐AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with dl ‐tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β‐Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with dl ‐tartaric acid. The cocrystals of glycine and β‐alanine with dl ‐tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β‐alanine in (III), GABA in (IV) and dl ‐AABA in (V)], which are linked by strong O—H…O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (AA)+ in (III) and (V), and A+A+ in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and dl ‐AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except dl ‐AABA) correlates with the melting point of its mixed crystal.  相似文献   

13.
A series of β‐amino esters were synthesized by the reaction of N‐tosyl aldimine or N‐hydroxy aldimine with bromoacetate by sonochemical Reformatsky reaction. The β‐N‐hydroxyamino ester was obtained and the formed sensitive hydroxylamino functionality was resistant under the reaction condition. The β‐lactam also was synthesized by the reaction of Np‐methoxy aldimine as reacting substrate under this sonochemical Reformatsky reaction condition.  相似文献   

14.
Chiral discrimination of seven enantiomeric pairs of β‐3‐homo‐amino acids was studied by using the kinetic method and trimeric metal‐bound complexes, with natural and unnatural α‐amino acids as chiral reference compounds and divalent metal ions (Cu2+ and Ni2+) as the center ions. The β‐3‐homo‐amino acids were selected for this study because, first of all, chiral discrimination of β‐amino acids has not been extensively studied by mass spectrometry. Moreover, these β‐3‐homo‐amino acids studied have different aromatic side chains. Thus, the emphasis was to study the effect of the side chain (electron density of the phenyl ring, as well as the difference between phenyl and benzyl side chains) for the chiral discrimination. The results showed that by the proper choice of a metal ion and a chiral reference compound, all seven enantiomeric pairs of β‐3‐homo‐amino acids could be differentiated. Moreover, it was noted that the β‐3‐homo‐amino acids with benzyl side chains provided higher enantioselectivity than the corresponding phenyl ones. However, increasing or decreasing the electron density of the aromatic ring by different substituents in both the phenyl and benzyl side chains had practically no role for chiral discrimination of β‐3‐homo‐amino acids studied. When copper was used as the central metal, the phenyl side chain containing reference molecules (S)‐2‐amino‐2‐phenylacetic acid (L ‐Phg) and (S)‐2‐amino‐2‐(4‐hydroxyphenyl)‐acetic acid (L ‐4′‐OHPhg) gave rise to an additional copper‐reduced dimeric fragment ion, [CuI(ref)(A)]+. The inclusion of this ion improved noticeably the enantioselectivity values obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Selected 5‐substituted derivatives 4 of 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one were treated with propane‐1,3‐dithiol under various conditions. The unprotected hydroxy ketones underwent cyclization during the dithiol addition and gave the corresponding 3‐(diethoxymethyl)‐2‐oxa‐6,10‐dithiaspiro[4.5]decan‐3‐ols 5 in 80–90% yield as the only products (Scheme 3 and Table 1). These products can be regarded as partly modified carbohydrates in the furanose form. When the benzyl‐protected analogues 10‐Bn of the 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one derivatives were treated with the same dithiol, however, no cyclization occurred; instead the corresponding 3‐{2‐[(benzyloxy)methyl]‐1,3‐dithian‐2‐yl}‐1,1‐diethoxypropan‐2‐one derivatives 11‐Bn were formed in good yield (up to 99%; Table 4). These 1,3‐dithianes were and are in the process of being converted to a number of new carbohydrate analogues, and here are reported high‐yield syntheses of functionalized molecules 17 belonging to the 5,5‐diethoxy‐1,4‐dihydroxypentan‐2‐one family of compounds (Table 7), via 15‐Bn (Table 5) and 16‐Bn (Table 6 and Scheme 8).  相似文献   

16.
An efficient cobalt‐catalyzed chemoselective reduction of β‐CF3‐α,β‐unsaturated ketones using benzylamine as hydrogen transfer agent involving intramolecular 1,5‐hydrogen transfer is reported. The reaction proceeded smoothly with a relatively wide range of substrates including those bearing aromatic heterocycles such as a furyl ring system in high yields (74–92 %). This provides an efficient method for the synthesis of β‐CF3 saturated ketones in one‐pot. This methodology was also applied to the selective C=C reduction of other enone substrates bearing no β‐CF3‐substituent, of which β‐substituted or β,β‐disubstituted enones are tolerated, giving the desired products in good yields (72–75 %). Mechanistic studies indicate that the reaction involves 1,5‐hydrogen transfer.  相似文献   

17.
The cerium(IV) ammonium nitrate (CAN)‐catalyzed sequential multicomponent reaction between tryptamine, α,β‐unsaturated aldehydes, and β‐dicarbonyl compounds affords highly substituted indolo[2,3‐a]quinolizines in a single synthetic operation. Two rings are generated through the creation of two C? C and two C? N bonds by a domino process comprising initial β‐enaminone formation, followed by individual Michael addition, 6‐exotrig cyclization, iminium formation, and Pictet–Spengler steps. Furthermore, the reaction is diastereoselective and affords exclusively compounds with a trans relationship between the H‐2 and H‐12b protons. The use of amines bearing a less nucleophilic side chain aromatic ring (5‐bromotryptamine, 3,4‐dimethoxyphenylethylamine) prevents the Pictet–Spengler final step and leads to N‐indolylethyl or N‐phenylethyl‐1,4‐dihydropyridines, which are cyclized to the corresponding indolo[2,3‐a]quinolizines or benzo[a]quinolizines in the presence of HCl in methanol/water. Treatment of the fused quinolizine derivatives with sodium triacetoxyborohydride led to the corresponding indolo[2,3‐a]quinolizidines or benzo[a]quinolizidines, possessing four stereogenic centers, as mixtures of two diastereomers.  相似文献   

18.
A catalytic asymmetric intramolecular homologation of simple ketones with α‐diazoesters was firstly accomplished with a chiral N,N′‐dioxide–Sc(OTf)3 complex. This method provides an efficient access to chiral cyclic α‐aryl/alkyl β‐ketoesters containing an all‐carbon quaternary stereocenter. Under mild conditions, a variety of aryl‐ and alkyl‐substituted ketone groups reacted with α‐diazoester groups smoothly through an intramolecular addition/rearrangement process, producing the β‐ketoesters in high yield and enantiomeric excess.  相似文献   

19.
The study of the catalytic activity and activation mechanism of asymmetric uranyl‐salophens with α, β‐unsaturated aldehydes or α, β‐unsaturated ketones, is a research hotspot. In this paper, the complexes of the uranyl–salophen(U‐S) modified by unilateral benzene, coordinated with cyclohexenone, cyclopentenone and acrolein, were investigated using density functional theory calculations at the level of B3LYP/6‐311G(d, p) basis set. The results showed that the uranyl‐salophen(U‐S) weakened the large π bond between C = C and C = O of the α, β‐unsaturated aldehydes and ketones, making the unsaturated aldehydes and ketones activated. In addition, the molecular‐recognition selectivity of the asymmetrical uranyl‐salophen for cyclohexenone and cyclopentenone were much higher than for acrolein.  相似文献   

20.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号