首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

2.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

3.
β‐Bromo‐α,β‐unsaturated ketones are condensed with arylhydrazines to form hydrazones, which are in situ intramolecularly cyclized into 3‐substituted 1‐aryl‐1 H‐pyrazoles under a catalytic system of Pd(OAc)2/1,3‐bis(diphenylhosphino)propane (dppp)/NaOtBu. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

5.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

6.
《中国化学》2017,35(11):1665-1668
An efficient method for Cu‐catalyzed decarboxylative trifluoromethylation of β ‐ketoacids to achieve α ‐trifluoromethyl ketones was developed. A wide variety of synthetically useful α ‐trifluoromethyl ketones were obtained in modest to good yields under mild reaction conditions. The present method also exhibits good functional‐group compatibility.  相似文献   

7.
We report a novel 1:1 cocrystal of β‐alanine with dl ‐tartaric acid, C3H7NO2·C4H6O6, (II), and three new molecular salts of dl ‐tartaric acid with β‐alanine {3‐azaniumylpropanoic acid–3‐azaniumylpropanoate dl ‐tartaric acid–dl ‐tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ‐aminobutyric acid [3‐carboxypropanaminium dl ‐tartrate, C4H10NO2+·C4H5O6, (IV)] and dl ‐α‐aminobutyric acid {dl ‐2‐azaniumylbutanoic acid–dl ‐2‐azaniumylbutanoate dl ‐tartaric acid–dl ‐tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of dl ‐tartaric acid with glycine, (I), β‐alanine, (II) and (III), GABA, (IV), and dl ‐AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with dl ‐tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β‐Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with dl ‐tartaric acid. The cocrystals of glycine and β‐alanine with dl ‐tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β‐alanine in (III), GABA in (IV) and dl ‐AABA in (V)], which are linked by strong O—H…O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (AA)+ in (III) and (V), and A+A+ in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and dl ‐AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except dl ‐AABA) correlates with the melting point of its mixed crystal.  相似文献   

8.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Various optically active (4R)‐alkyloxycarbonyl‐3,3‐dialkyl‐2‐oxetanones as monomers were synthesized from L‐(S)‐malic acid in six steps to prepare a new family of stereopolyesters for biomedical applications. The synthesis began with an esterification followed of a dialkylation in the aim to introduce hydrophobic groups as methyl or reactive group as allyl. Then, a saponification has permitted to obtain the corresponding diacids that reacted with appropriate alcohols to furnish different monoesters. The last and most important step was activation of hydroxyl group of monoesters with the asymmetric carbon configuration inversion according to the Mitsunobu reaction. Thus, this reaction has provided lactones from monoesters with 100% enantiomeric excess which was confirmed by 1H NMR and by the synthesis of corresponding isotactic and semicrystalline homopolyesters. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2586–2597  相似文献   

10.
Selected 5‐substituted derivatives 4 of 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one were treated with propane‐1,3‐dithiol under various conditions. The unprotected hydroxy ketones underwent cyclization during the dithiol addition and gave the corresponding 3‐(diethoxymethyl)‐2‐oxa‐6,10‐dithiaspiro[4.5]decan‐3‐ols 5 in 80–90% yield as the only products (Scheme 3 and Table 1). These products can be regarded as partly modified carbohydrates in the furanose form. When the benzyl‐protected analogues 10‐Bn of the 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one derivatives were treated with the same dithiol, however, no cyclization occurred; instead the corresponding 3‐{2‐[(benzyloxy)methyl]‐1,3‐dithian‐2‐yl}‐1,1‐diethoxypropan‐2‐one derivatives 11‐Bn were formed in good yield (up to 99%; Table 4). These 1,3‐dithianes were and are in the process of being converted to a number of new carbohydrate analogues, and here are reported high‐yield syntheses of functionalized molecules 17 belonging to the 5,5‐diethoxy‐1,4‐dihydroxypentan‐2‐one family of compounds (Table 7), via 15‐Bn (Table 5) and 16‐Bn (Table 6 and Scheme 8).  相似文献   

11.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

12.
NH2SO3H–SiO2/water as a novel catalytic system was used for the synthesis of (α,β‐unsaturated) β‐amino ketones via aza‐Michael reaction at reflux conditions. The methodology was of general applicability and the catalyst exhibited activity up to five cycles. The catalyst was characterized for the first time using FT‐IR, X‐ray diffraction and scanning electron microscopic–energy dispersion analytical X‐ray. The stability of the catalyst was evaluated by differential scanning calorimetry and TGA/differential thermal analysis. High efficiency of the catalyst along with its recycling ability and the rather low loading demonstrated in reactions are the merits of the presented protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

14.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

15.
Reaction of α,β‐unsaturated ketones with cerium(IV) salts or lanthanide triflates in alcohols gave good yields of the corresponding β‐alkoxy compounds. In the case of 2‐cyclopentenone and 2‐cyclohexenone, the 1,1,3‐trialkoxy acetal derivatives were obtained preferentially accompanied by β‐alkoxyketone, except 2‐cycloheptenone. However, in the reaction of 2‐cycloheptenone with alcohol using cerium(IV) sulfate (CS)‐molecular sieve, 1,1,3‐trialkoxy derivatives were obtained. Also, in the cases of 1‐penten‐3‐one, 4‐hexen‐3‐one and 3‐hepten‐2‐one, 1,1,3‐trialkoxy derivatives were obtained preferentially. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

17.
Aluminum chloride (AlCl3) efficiently catalyzes one‐pot multicomponent condensation of enolizable ketones or alkyl acetoacetates with aldehydes, acetonitrile and acetyl chloride to afford β‐acetamido ketone or ester derivatives in high to excellent yields and in relatively short reaction times. Moreover, by this synthetic method, some novel β‐acetamido ketones and esters (i.e. one complex structure) are prepared.  相似文献   

18.
A general atom‐economical approach for the synthesis of α‐halomethyl ketones is demonstrated through Ce(SO4)2/acid co‐catalyzed hydration of a wide range of haloalkynes. The reactions are conducted under convenient conditions and provide products with excellent regioselectivity in good to excellent yields, with broad substrate scope. This protocol is an alternative to conventional α‐halogenation of ketones.  相似文献   

19.
20.
The Michael‐type addition of a 4‐hydroxycoumarin (=4‐hydroxy‐2H‐1‐benzopyran‐2‐one) 1 to a β‐nitrostyrene (=(2‐nitroethenyl)benzene) 2 in the presence of AcONH4 leads to substituted (3E)‐3‐[amino(aryl)methylidene]chroman‐2,4‐diones (=(3E)‐3‐[amino(aryl)methylene]‐2H‐1‐benzopyran‐2,4(3H)‐diones) 4 (Table 1). High yields, short reaction time, and easy workup are advantages of this novel one‐pot three‐component reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号