首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new compounds Pr8(C2)4Cl5 (1), Pr14(C2)7Cl9 (2), Pr22(C2)11Cl14 (3), Ce2(C2)Cl (4), La2(C2)Br (5), Ce2(C2)Br (6), Pr2(C2)Br (7), Ce18(C2)9Cl11 (8), and Ce26(C2)13Cl16 (9) were prepared by heating mixtures of LnX3, Ln and carbon or in an alternatively way LnX3, and “Ln2C3–x” in appropriate amounts for several days between 750 and 1200 °C. The crystal structures were investigated by X‐ray powder analysis (5–7) and/or single crystal diffraction (1–4, 8, 9). Pr8(C2)4Cl5 crystallizes in space group P21/c with the lattice parameters a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, β = 103.94(1) °, Pr14(C2)7Cl9 in Pc with a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, β = 104.00(3) °, Pr22(C2)11Cl14 in P21/c with a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, β = 103.92(3) °, Ce2(C2)2Cl in C2/c with a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, β = 101.37(3) °, La2(C2)2Br in C2/c with a = 15.313(5), b = 4.193(2), c = 6.842(2) Å, β = 100.53(3) °, Ce2(C2)2Br in C2/c with a = 15.120(3), b = 4.179(1), c = 6.743(2) Å, β = 101.09(3) °, Pr2(C2)2Br in C2/c with a = 15.054(5), b = 4.139(1), c = 6.713(3) Å, β = 101.08(3) °, Ce18(C2)9Cl11 in P$\bar{1}$ with a = 6.7705(14), b = 7.6573(15), c = 18.980(4) Å,α = 88.90(3) °, β = 80.32(3) °, γ = 76.09(3) °, and Ce26(C2)13Cl16 in P21/c with a = 7.6644(15), b = 54.249(11), c = 6.7956(14) Å, β = 103.98(3) ° The crystal structures are composed of Ln octahedra centered by C2 dumbbells. Such Ln6(C2)‐octahedra are condensed into chains which are joined into undulated sheets. In compounds 1–4 three and four up and down inclined ribbons alternate (4+4, 4+33+4–, 4+43+44+3), in compounds 8 and 9 four and five (4+5, 5+44+54+4), and in compounds 4–7 one, one ribbons (1+1) are present. The Ln‐(C2)‐Ln layers are separated by monolayers of X atoms.  相似文献   

2.
Three polymorphs of 4,4′‐diiodobenzalazine (systematic name: 4‐iodobenzaldehyde azine), C14H10I2N2, have crystallographically imposed inversion symmetry. 4‐Chloro‐4′‐iodobenzalazine [systematic name: 1‐(4‐chlorobenzylidene)‐2‐(4‐iodobenzylidene)diazane], C14H10ClIN2, has a partially disordered pseudocentrosymmetric packing and is not isostructural with any of the polymorphs of 4,4′‐diiodobenzalazine. All structures pack utilizing halogen–halogen interactions; some also have weak π (benzene ring) interactions. A comparison with previously published methylphenylketalazines (which differ by substitution of methyl for H at the azine C atoms) shows a fundamentally different geometry for these two classes, namely planar for the alazines and twisted for the ketalazines. Density functional theory calculations confirm that the difference is fundamental and not an artifact of packing forces.  相似文献   

3.
In the title compounds, 4‐aminopyridinium 4‐aminobenzoate dihydrate, C7H6NO2·C5H7N2+·2H2O, (I), and 4‐aminopyridinium nicotinate, C5H7N2+·C6H4NO2, (II), the aromatic N atoms of the 4‐aminopyridinium cations are protonated. In (I), the asymmetric unit is composed of two 4‐aminopyridinium cations, two 4‐aminobenzoate anions and four water molecules, and the compound crystallizes in a noncentrosymmetric space group. The two sets of independent molecules of (I) are related by a centre of symmetry which is not part of the space group. In (I), the protonated pyridinium ring H atoms are involved in bifurcated hydrogen bonding with carboxylate O atoms to form an R12(4) ring motif. The water molecules link the ions to form a two‐dimensional network along the (10) plane. In (II), an intramolecular bifurcated hydrogen bond generates an R12(4) ring motif and inter‐ion hydrogen bonding generates an R42(16) ring motif. The packing of adduct (II) is consolidated via N—H...O and N—H...N hydrogen bonds to form a two‐dimensional network along the (10) plane.  相似文献   

4.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

5.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Syntheses and X‐ray structural investigations have been carried out for (E)‐(4‐hydroxy­phenyl)(4‐nitro­phenyl)­diazene, C12H9N3O3, (Ia), (E)‐(4‐methoxy­phenyl)(4‐nitro­phenyl)­diazene, C13H11N3O3, (IIIa), and (E)‐[4‐(6‐bromo­hexyl­oxy)­phenyl](4‐cyano­phenyl)­diazene, C19H20BrN3O, (IIIc). In all of these compounds, the mol­ecules are almost planar and the azo­benzene core has a trans geometry. Compound (Ia) contains four and compound (IIIc) contains two independent mol­ecules in the asymmetric unit, both in space group P (No. 2). In compound (Ia), the independent mol­ecules are almost identical, whereas in crystal (IIIc), the two independent mol­ecules differ significantly due to different conformations of the alkyl tails. In the crystals of (Ia) and (IIIa), the mol­ecules are arranged in almost planar sheets. In the crystal of (IIIc), the mol­ecules are packed with a marked separation of the azo­benzene cores and alkyl tails, which is common for the solid crystalline precursors of mesogens.  相似文献   

7.
The synthesis of bifunctional pyridine and quinolione derivatives were investigated using terephthalic and isophthalic aldehydes as a precursor. The reaction proceeds under microwave irradiation with good yield (70–92%) and short reaction time (7–9 min.). We provide a rapid and efficient method of synthesizing a range of bifunctional monocyclic and bicyclic products related to 1,4‐dihydropyridines (1,4‐DHPs).  相似文献   

8.
Novel polyamide-imides were prepared from 3′,4′-dicarboxy-4″-chloroformyl terephthaloylphenone anhydride and various aromatic and aliphatic diamines. The polymers were characterized by viscosity, infrared spectra, TGA, DSC, and elemental analysis. The thermal stability of the films was comparable to that of polyamide-imides previously reported.  相似文献   

9.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

10.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

11.
The crystal structure of the title compound, C19H16N2O2, displays a trans configuration of the azo moiety, which forms an intramolecular O—H?N=N hydrogen bond. The H?N and O?N distances are 1.81 (3) and 2.581 (4) Å, respectively. The azo­benzene moiety is approximately planar, and has a dihedral angle of ca 23° with the substituted phenyl group.  相似文献   

12.
Nearly planar molecules of the title compound, C9H6IN, are packed in inclined stacks along the short crystallographic b axis and molecules in adjacent stacks are packed to form antiparallel zigzag chains. Short intermolecular N...I contacts [3.131 (3) Å] are observed between molecules in adjacent stacks. A network of C—H...π hydrogen bonds [2.821 (5) and 3.083 (3) Å] between molecules in adjacent stacks is also present. These motif‐generating interactions, including the weak C—H...π interactions, are of relevance in crystal engineering and design.  相似文献   

13.
The title compound, C12H8N2O6S2, (I), is a positional isomer of S‐(2‐nitrophenyl) 2‐nitrobenzenethiosulfonate [Glidewell, Low & Wardell (2000). Acta Cryst. B 56 , 893–905], (II). The most obvious difference between the two isomers is the rotation of the nitro groups with respect to the planes of the adjacent aryl rings. In (I), the nitro groups are only slightly rotated out of the plane of the adjacent aryl ring [2.4 (6) and 6.7 (7)°], while in (II) the nitro groups are rotated by between 37 and 52°, in every case associated with S—S—C—C torsion angles close to 90°. Other important differences between the isomers are the C—S—S(O2)—C torsion angle [78.39 (2)° for (I) and 69.8 (3)° for (II) (mean)] and the dihedral angles between the aromatic rings [12.3 (3)° for (I) and 28.6 (3)° for (II) (mean)]. There are two types of C—H...O hydrogen bond in the structure [C...O = 3.262 (7) Å and C—H...O = 144°; C...O = 3.447 (7) Å and C—H...O = 166°] and these link the molecules into a two‐dimensional framework. The hydrogen‐bond‐acceptor properties differ between the two isomers.  相似文献   

14.
15.
The δ polymorph of sulfanilamide (or 4‐aminobenzenesulfonamide), C6H8N2O2S, displays an overall three‐dimensional hydrogen‐bonded network that is dominated by a two‐dimensional substructure with R22(8) rings; these result from dimeric N—H...O interactions between adjacent sulfonamide groups. This study shows how the polymorphism of sulfanilamide is linked to its versatile hydrogen‐bonding capabilities.  相似文献   

16.
程琳  应磊  杨小玲  蹇锡高 《中国化学》2005,23(2):200-203
A new monomer diacid, 1,2-dihydro-2-(4-carboxylphenyl)-4-[4-(4-carboxylphenoxy)-3-methylphenyl]phtha-lazin-1-one (3), was synthesized through the aromatic nucleophilic substitution reaction of a readily available unsymmetrical phthalazinone 1 bisphenol-like with p-chlorobenzonitrile in the presence of potassium carbonate in N,N-dimethylacetamide and alkaline hydrolysis. The diacid could be directly polymerized with various aromatic diamines 4a-4e using triphenyl phosphite and pyridine as condensing agents to give five new aromatic poly(ether amide)s 5a-5e containing the kink non-coplanar heterocyclic units with inherent viscosities of 1.30-1.54 dL/g.The polymers were readily soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethyl-acetamide (DMA), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and even in m-cresol and pyridine (Py). The transparent, flexible and tough films could be formed by solution casting. The glass transition tem-peratures Tg were in the range of 286-317℃.  相似文献   

17.
18.
19.
(?)-(R)-4,4,4,4′,4′,4′-Hexafluorovaline hydrochloride ((R)- 5 ) of 98% ee is prepared from β,β-bis(trifluoromethyl)acrylic acid (= benzyl 4,4,4-trifluoro-3-(trifluoromethyl)but-2-enoate; 1 ) in 4 steps with an overall yield of 9.6%. Key step is the separation of the TsOH salts of the diastereoisomers obtained by anti-Michael addition of (+)-(R)-1-phenylethylamine ( 2 ) to 1 (→ (R,R)- 3 ). In contrast to the published (S)-chirality, the X-ray structure analysis of (R,S)- 6 reveals, that (R)-chirality has to be assigned to the levorotatory (?)-4,4,4,4′,4′,4′-hexafluorovaline hydrochloride.  相似文献   

20.
The kinetics of the oxidation of 4‐isopropylbiphenyl ( 1 ) in the liquid phase by oxygen to 1‐(1,1′‐biphenyl‐4‐yl)‐1‐methylethyl hydroperoxide ( 2 ) was investigated. The oxidizability of 1 in the temperature range from 60°C to 120°C and the overall energy activation of oxidation were determined. Long‐term oxidation of 1 to 2 in the temperature range of 80–120°C was investigated, and the yield and selectivity of the process were determined. Pure 2 was obtained, and its properties were defined. 4‐Hydroxybiphenyl was obtained as a result of the acidic decomposition of 2 . © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 527–532, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号