首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astragali Radix total flavonoids (ARTF) is one of the main bioactive components of Astragali Radix (AR), and has many pharmacological effects. However, its metabolism and effective forms remains unclear. The HPLC-DAD-ESI-IT-TOF-MSn technique was used to screen and tentatively identify the in vivo original constituents and metabolites of ARTF and to clarify their distribution in rats after oral administration. In addition, modern chromatographic methods were used to isolate the main metabolites from rat urine and NMR spectroscopy was used to elucidate their structures. As a result, 170 compounds (23 original constituents and 147 metabolites) were tentatively identified as forms existing in vivo, 13 of which have the same pharmacological effect with ARTF. Among 170 compounds, three were newly detected original constituents in vivo and 89 were new metabolites of ARTF, from which 12 metabolites were regarded as new compounds. Nineteen original constituents and 65 metabolites were detected in 10 organs. Four metabolites were isolated and identified from rat urine, including a new compound (calycoisn-3’-O-glucuronide methyl ester), a firstly-isolated metabolite (astraisoflavan-7-O-glucoside-2’-O-glucuronide), and two known metabolites (daidzein-7-O-sulfate and calycosin-3’-O-glucuronide). The original constituents and metabolites existing in vivo may be material basis for ARTF efficacy, and these findings are helpful for further clarifying the effective forms of ARTF.  相似文献   

2.
A high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry method was established to detect as many constituents in rat biological fluids as possible after oral administration of Shuanghua Baihe tablets (SBT). An Agilent Poroshell 120 EC‐C18 column was adopted to separate the samples, and mass spectra were acquired in positive and negative modes. First, the fingerprints of SBT were established, resulting in 32 components being detected within 40 min. Among these compounds, 12 were tentatively identified by comparing the retention times and mass spectral data with those of reference standards and the reference literature; the other 20 components were tentatively assigned solely based on the MS data. Furthermore, metabolites in rat plasma and urine after oral administration of SBT were also analyzed. A total of 19 compounds were identified, including 13 prototypes and six metabolites through metabolic pathways of demethylation and glucuronide conjugation. Glucuronidated alkaloids were the main constituents in the plasma, and were then excreted from urine. This is the first systematic study on the metabolic profiling of SBT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
HPLC with diode array detection and ESI‐TOF‐MS was used for the study of the constituents in Apocynum venetum L. extracts and the metabolites in rat urine after oral administration of A. venetum L. extracts. A formula database of the known constituents in A. venetum L. was established, and 21 constituents were rapidly identified by accurately matching their molecular masses with the formulae of the compounds in the database. Furthermore, 34 metabolites were detected and elucidated in the rat urine. The scientific and plausible biotransformation pathways of the flavonoid components in A. venetum L. were also proposed together with the presentation of clues for potential mechanisms of bioactivity. This specific and sensitive HPLC–ESI‐TOF‐MS method can be used to identify the chemical components in the extracts of A. venetum L. and their metabolites in rat urine. This method can also be used to reveal the possible metabolic mechanisms of action of the extract components in vivo.  相似文献   

4.
A high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass tandem mass spectrometry method was established to characterize the chemical constituents of Kangxianling granule (KXL), a traditional Chinese medicine formula, and the metabolic profile in rat urine and plasma after oral administration of KXL. A total of 27 compounds in KXL extract and 13 prototype compounds with 12 metabolites in rat urine and plasma were identified. Among the 27 detected compounds, 15 were identified by comparing the retention time and MS data with that of reference compounds and the other 12 compounds were tentatively assigned based on the MS data and reference literature. The main prototype components absorbed in rat were amygdalin, salvianolic acid B, tanshinones and anthraquinones. Hydroxylation, glucuronidation and sulfation were the principal metabolic pathways in rat. The results revealed that the 25 compounds identified in rat urine and plasma were the potential active ingredients of KXL, which provides helpful chemical information for further study of the pharmacology mechanism of KXL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
An integrated approach combining data acquisition using MSE and multi-period product ion scan (mpMS/MS), with high-resolution characteristic extracted ion chromatograms (hcXIC) as a data mining method, was developed for in vivo drug metabolites screening and identification. This approach is illustrated by analyzing metabolites of a potential anticancer agent, 3,6,7-trimethoxyphenanthroindolizidine (CAT) in rat urine based on rapid resolution liquid chromatography combined with tandem mass spectrometry (RRLC–MS/MS). Untargeted full-scan MSE enabled the high-throughput acquisition of potential metabolites, and targeted mpMS/MS contributed to the sensitivity and specificity of the acquisition of molecules of interest. The data processing method hcXIC, based on the structure of CAT, was shown to be highly effective for the metabolite discovery. Through the double-filtering effect of the characteristic ion and accurate mass, conventional extracted ion chromatograms that contained a substantial number of false-positive peaks were simplified into chromatograms essentially free of endogenous interferences. As a result, 21 metabolites were detected in rat urine after oral administration of CAT. Based on the characteristic fragmentation patterns of the phenanthroindolizidine alkaloid, the structures of 9 metabolites were identified. Furthermore, the interpretation of the MS/MS spectra of these metabolites enabled the determination of demethylation position as well as the differentiation between N-oxidized and hydroxylated metabolites.  相似文献   

7.
Alzheimer’s disease (AD) can be treated by the inhibition of Beta Amyloid protein (Aβ) and inhibition of Acetylcholinesterase (ACHE). Anti-Alzheimer’s potential phytoconstituents from Neolamarckia cadamba methanolic bark extracts were identified through GC–MS/MS analysis and in silico molecular docking analysis. Powdered bark sample was subjected to extract by soxhlet extractor with n-hexane, chloroform and methanol solvents respectively. The methanolic extract was taken for GC–MS/MS analysis, the observed chromatogram was revealed the presence of 61 constituents in the methanolic extract, 59 new phytoconstituents were identified which were not reported earlier as constituents any part of N. cadamba. GC–MS/MS detected phytoconstituents were analysed through the docking analysis by iGEMDOCK software against Aβ (PDB ID: 2LMN) and ACHE (PDB ID: 3LII) and compared with standard known inhibitors of galantamine and curcumin. Docking analysis binding energy was determined and verified by Discovery studio visulaizer. Both inhibition assay top 5 best dock energy compounds were analysed through the in silico modeling through admetSAR web portal for parameters of intestinal absorption, blood brain barrier permeation, carcinogencity, and acute oral toxicity were determined. From that heptadecanoic acid, 16-methyl-, methyl ester; beta-sitosterol acetate and octadecanoic acid, 2-hydroxy-, methyl ester inhibitors were identified. Further the top lead successful compound of each target molecular interactions were detected by LigPlot analysis. From this research these three compounds are best to treat AD than standard. Isolation of individual compounds would, however, help to find new compounds for other diseases and lead molecules for AD were identified.  相似文献   

8.
In this paper, mesterolone metabolic profiles were investigated carefully. Mesterolone was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOFMS) for the first time. Liquid–liquid extraction was applied to processing urine samples, and dilute‐shoot analyses of intact metabolites were also presented. In LC‐QTOFMS analysis, chromatographic peaks for potential metabolites were hunt down by using the theoretical [M–H]? as target ions in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Ten metabolites including seven new sulfate and three glucuronide conjugates were found for mesterolone. Because of no useful fragment ion for structural elucidation, gas chromatography–mass spectrometry instrumentation was employed to obtain structural details of the trimethylsilylated phase I metabolite released after solvolysis. Thus, their potential structures were proposed particularly by a combined MS approach. All the metabolites were also evaluated in terms of how long they could be detected, and S1 (1α‐methyl‐5α‐androst‐3‐one‐17β‐sulfate) together with S2 (1α‐methyl‐5α‐androst‐17‐one‐3β‐sulfate) was detected up to 9 days after oral administration, which could be the new potential biomarkers for mesterolone misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
With the technique of metabolomics, gas chromatography/mass spectrometry (GC/MS), urine or serum metabolites can be assayed to explore disease biomarkers. In this work, we present a metabolomic method to investigate the urinary metabolic difference between hepatocellular carcinoma (HCC, n = 20) male patients and normal male subjects (n = 20). The urinary endogenous metabolome was assayed using chemical derivatization followed by GC/MS. After GC/MS analysis, 103 metabolites were detected, of which 66 were annotated as known compounds. By a two sample t-test statistics with p < 0.05, 18 metabolites were shown to be significantly different between the HCC and control groups. A diagnostic model was constructed with a combination of 18 marker metabolites or together with alphafetoprotein, using principal component analysis and receiver-operator characteristic curves. The multivariate statistics of the diagnostic model yielded a separation between the two groups with an area under the curve value of 0.9275. This non-invasive technique of identifying HCC biomarkers from urine may have clinical utility.  相似文献   

10.
Zhi‐zi‐chi decoction (ZZCD) is a classical formula widely used in Chinese clinical application. In the present study, a novel and efficient strategy has been developed for screening and identification of multiple constituents and their metabolites of ZZCD using ultra‐high‐performance liquid chromatography combined with triple time‐of‐flight mass spectrometry. The novel approach of an online data acquisition method dependent on multiple mass defect filter and dynamic background subtraction is combined with multiple data processing techniques. First, a total of 109 potential bioactive compounds were detected in ZZCD. Based on the same instrumental conditions, 100 compounds were found in rat biofluids after oral administration of ZZCD, including 61 original compounds of ZZCD as well as 39 metabolites. Conjugations with sulfate, glucuronate and amino acids were found as the predominant metabolic reaction of ZZCD. As more xenobiotics were detected in urine than those in bile were, it demonstrated that multiple components of ZZCD have undergone comprehensive renal excretion. This study reported the urinary and biliary excretion in rats after oral administration of ZZCD for the first time. The present study expands our knowledge about the constituents and metabolism of ZZCD, which could be very useful for further pharmacological and clinical studies of ZZCD.  相似文献   

11.
The aim of our study was to employ a liquid chromatography coupled with electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS n ) method for the identification of the major components of Resina Draconis extract (RDE) and their metabolites in rat urine. Based on the above, 18 compounds were tentatively identified from the RDE. Among them, 4 compounds were unambiguously characterized by the comparison of the retention time and mass spectra with those of reference compounds and 14 compounds were tentatively identified by comparing the mass spectra with those of literature. In vivo, 21 compounds, including 13 parent compounds and 8 metabolites, were detected in rat urine after oral administration of RDE. The results may be helpful for future research on traditional Chinese medicine.  相似文献   

12.
The objective of this paper was to determine how long after administration of benzodiazepine clonazepam (CLO), its major metabolite 7-aminoclonazepam (7-ACLO) could be detected in urine collected from 10 healthy volunteers who received a single 3-mg dose of Klonopin (clonazepam). Such data would be of great importance to law enforcement agencies trying to determine the best time interval for urine collection from a victim of drug-facilitated sexual assault in order to reveal drug use. A highly sensitive NCI–GC–MS method for the simultaneous quantitation of CLO and its major metabolite 7-ACLO in urine was developed and validated. The following urine samples were collected from each volunteer: one before CLO administration, and 6 h, and 1, 3, 5, 8, 10, 14, 21 and 28 days after. All urine samples (1 mL) were extracted following addition of the internal standard (D5-diazepam) and enzymatic hydrolysis (-glucuronidase) using solid-phase extraction columns. Standard curves for CLO (500–4000 pg mL–1) and 7-ACLO (50–2000 pg mL–1) were prepared by spiking aliquots of negative urine. The urine from every subject was still positive for 7-ACLO 14 days after administration of the drug. Eight of the ten volunteers had measurable amounts of the metabolite 21 days after administration. One volunteer was still positive 28 days after administration. Six of the volunteers had urine concentrations of 7-ACLO that peaked at 1 day after administration. One volunteer had the highest concentration of 7-ACLO at 3 days, two volunteers at 5 days, and one at 8 days. The range of concentrations detected was from 73.0 pg mL–1 to 183.2 ng mL–1. CLO was not detected in any of the samples.  相似文献   

13.
Paederia scandens (Lour.) Merri. (Jishiteng in Chinese) is a Chinese traditional medicine widely used in treating various diseases. However, its active components have remained unknown. In the present study, a rapid and sensitive method by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-MSn) techniques was employed to investigate the absorbed constituents in rats after oral administration of Paederia scandens decoction. By comparing their MS data with those of authentic compounds and published data, a total of six compounds (paederosid, 1; paederosidic acid, 2; paederosidic acid methyl ester, 3; 6-hydroxy geniposide, 4; asperuloside, 5; and deacetyl asperuloside, 6) were identified in the P. scandens decoction samples. In addition, a total of seven compounds, including three iridoid glucosides and four of their metabolites, were identified in rat urine samples after administration. In addition, six compounds, including four iridoid glucosides and two of their metabolites, were identified in rat serum samples after administration. Our results significantly narrow the range of potentially active compounds in P. scandens decoction, and build a solid foundation for future research on its mechanism.  相似文献   

14.
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.  相似文献   

15.
A rapid and sensitive ultra‐high performance liquid chromatography–mass spectrometry (UPLC‐MS/MS) method was developed and validated for the quantification of 10 major active constituents in rat urine after oral administration of Shensong Yangxin Capsule (SSYX) using diazepam as an internal standard (IS). The urine samples were pretreated and extracted by solid‐phase extraction prior to UPLC. Chromatographic separation was achieved on a Waters C18 (2.1 × 50 mm, 1.7 µm) column using a gradient elution program with 0.1% formic acid aqueous solution and acetonitrile at a flow rate of 0.4 mL/min. Detection and quantitation were accomplished by a hybrid quadrupole mass spectrometer using electrospray ionization source and multiple reaction monitoring in the positive ionization mode. The mass transition ion‐pairs (m/z) for quantitation were all optimized and the total run time was 4.50 min. The specificity, linearity, accuracy, precision, recovery, matrix effect and stabilities were all validated for the analytes in urine samples. The validation results indicated that this method was simple, rapid, specific and reliable. The proposed method was successfully applied to investigate the urinary excretion kinetics of 10 compounds in rat after oral administration of SSYX. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Chan SA  Lin SW  Yu KJ  Liu TY  Fuh MR 《Talanta》2006,69(4):952-956
This paper describes a liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) for the qualitative and quantitative analysis of three isoflavone aglycones (glycitein, daidzein and genistein) in human serum. Positive ion mode was used for the detection of these compounds and selective reaction monitoring (SRM) was employed for quantitative measurement. The SRM transitions monitored were as 285.0  242.0, 270.0 for glycitein, 255.0  137.0, 153.0, 181.0, 199.0 for daidzein and 271.0  153.0, 215.0 for genistein. d3-Daidzein was used as an internal standard for quantitative measurement. The linearity was good from 0.5 to 500 ng/ml. The detection limit based on a signal-to-noise ratio of three was 0.27, 0.38 and 0.29 ng/ml for glycitein, daidzein and genistein, respectively. A newly developed solid phase extraction (SPE) procedure was developed for sample pre-treatment. Good recovery, 92.3-103.2%, for three isoflavone aglycones were obtained. This newly developed method was successfully applied to evaluate isoflavone pharmacokinetic in human serum after oral administration.  相似文献   

18.
A simple and rapid high-performance liquid chromatographic–electrospray ionization (ESI) tandem mass spectrometric method has been developed for elucidation of the structures of the metabolites of arecoline in rat urine after administration of a single dose (20 mg kg?1). The urine samples were purified on a C18 solid-phase extraction cartridge and analysis was then performed on a reversed-phase C18 column with 60:40 (v/v) methanol–0.01% triethylamine solution (2 mmol L?1, adjusted to pH 3.5 with formic acid) as mobile phase and detection by on-line MS–MS. Identification of the metabolites and elucidation of their structures were performed by comparing molecular masses (ΔM), retention-times, and product ion spectra with those of the parent drug. The parent drug arecoline, four phase-I metabolites, and one phase-II metabolite were identified in rat urine.  相似文献   

19.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Xylazine is used in veterinary medicine for sedation, anesthesia, and analgesia. It has also been reported to be misused as a horse doping agent, a drug of abuse, a drug for attempted sexual assault, and as source of accidental or intended poisonings. So far, no data concerning human metabolism have been described. Such data are necessary for the development of toxicological detection methods for monitoring drug abuse, as in most cases the metabolites are the analytical targets. Therefore, the metabolism of xylazine was investigated in rat and human urine after several sample workup procedures. The metabolites were identified using gas chromatography (GC)–mass spectrometry (MS) and liquid chromatography (LC) coupled with linear ion trap high-resolution multistage MS (MS n ). Xylazine was N-dealkylated and S-dealkylated, oxidized, and/or hydroxylated to 12 phase I metabolites. The phenolic metabolites were partly excreted as glucuronides or sulfates. All phase I and phase II metabolites identified in rat urine were also detected in human urine. In rat urine after a low dose as well as in human urine after an overdose, mainly the hydroxy metabolites were detected using the authors’ standard urine screening approaches by GC–MS and LC–MS n . Thus, it should be possible to monitor application of xylazine assuming similar toxicokinetics in humans.
Figure
Reconstructed high-resolution mass chromatograms indicating xylazine and its phase I metabolites as well as the mass spectra with structures of xylazine and one of its hydroxy metabolites  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号