首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.  相似文献   

2.
Li  Zhixiong  Song  Xinmeng  Fu  Zhiwen  Wu  Bin  Ling  Yun  Sun  Zhaolin  Chen  Mingcang  Xu  Desheng  Huang  Chenggang 《Chromatographia》2013,76(13):767-780

The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.

  相似文献   

3.
For the first time a rapid method for qualitative and quantitative analysis of constituents in Dengzhanxixin injection was established by liquid chromatography with electrospray ionization–tandem mass spectrometry. Eighteen compounds including flavonoids and phenolic acids were characterized or tentatively identified. Ten of these compounds, including 5-O-caffeoylquinic acid, caffeic acid, 1,3-O-dicaffeoylquinic acid, 6′-O-caffeoylerigeroside, scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, erigoster B, apigenin-7-O-glucuronide and 4,5-O-dicaffeoylquinic acid, were further quantified as marker substances by LC-DAD using a C18 column at 0.4 mL min?1 within 37 min. The quantitative method was validated for ten interesting compounds, including linearity, accuracy, precisions, LOQ and LOD, which was proved to be sensitive, reproducible and accurate. The study might provide a comprehensive method for the quality assessment of dengzhanxixin injection.  相似文献   

4.
Toward the standardization of common evening primrose (Oenothera biennis) sprout extract (OBS-E), we aimed to obtain indicator compounds and use a validated method. HPLC-UVD allowed simultaneous quantification of the indicator compounds quercetin-3-O-glucuronide and ellagic acid. The method was validated in terms of specificity, linearity, precision, accuracy, and limit of detection/limit of quantification (LOD/LOQ). High specificity and linearity was demonstrated, with correlation coefficients of 1.0000 for quercetin-3-O-glucuronide and 0.9998 for ellagic acid. The LOD/LOQ values were 0.486/1.472 μg/mL for quercetin-3-O-glucuronide and 1.003/3.039 μg/mL for ellagic acid. Intra-day and inter-day variability tests produced relative standard deviation for each compound of <2%, a generally accepted precision criterion. High recovery rate were also obtained, indicating accuracy validation. The OBS-E prepared using various concentrations of ethanol were then analyzed. The 50% ethanol extract had highest content of quercetin-3-O-glucuronide, whereas the 70% ethanol extract possessed the lowest. However, the ellagic acid content was highest in the 70% ethanol extract and lowest in the 90% ethanol extract. Thus, quercetin-3-O-glucuronide and ellagic acid can be used industrially as indicator compounds for O. biennis sprout products, and our validated method can be used to establish indicator compounds for other natural products.  相似文献   

5.
Pterostilbene is a dimethyl ether derivative of resveratrol, less metabolized than its analogue, due to the substitution of two hydroxyl groups with methoxyl groups. Nevertheless, the amounts of pterostilbene phase II metabolites found in plasma and tissues are higher than those of the parent compound. The first aim of this study was to assess whether pterostilbene-4′-O-glucuronide (PT-G) and pterostilbene-4′-O-sulfate (PT-S) were able to prevent triglyceride accumulation in AML12 (alpha mouse liver 12) hepatocytes. This being the case, we aimed to analyze the mechanisms involved in their effects. For this purpose, an in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10 or 25 µM of pterostilbene, pterostilbene-4′-O-glucuronide or pterostilbene-4′-O-sulfate for 18 h. Triglycerides and cell viability were assessed by a commercial kit and crystal violet assay, respectively. Protein expression of enzymes and transporters involved in triglyceride metabolism was analyzed by immunoblot. The results showed for the first time the anti-steatotic effect of pterostilbene metabolites and thus, that they contribute to the preventive effect induced by pterostilbene on steatosis in in vivo models. This anti-steatotic effect is mainly due to the inhibition of de novo lipogenesis.  相似文献   

6.
In this study, the technique of high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (HPLC‐ESI‐Q‐TOFMS) was used to analyze and identify the absorptive constituents and their metabolites in drug‐containing urine of Wuzhishan (WZS)‐miniature pigs administered with Puerariae Lobatae Radix (PLR) decoction. With the accurate mass measurements (<5 ppm) and effective MS2 fragment ions, 96 compounds, including eight original constituents and 88 metabolites, were identified from the drug‐containing urine. Among these, 64 metabolites were new ones and their structures can be categorized into five types: isoflavones, puerols, O‐desmethylangolensins, equols and isoflavanones. In particular, puerol‐type constituents in PLR were first proved to be absorptive in vivo. Meanwhile, the metabolic pathways of PLR in vivo were investigated. On the basis of relative content of the identified compounds, 13 major metabolites accounting for approximately 50% of the contents, as well as their corresponding 12 prototype compounds, were determined as the major original absorptive constituents and metabolites of PLR in vivo. The HPLC‐ESI‐Q‐TOFMS technique proved to be powerful for characterizing the chemical constituents from the complicated traditional Chinese medicine matrices in this research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150?×?2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50?×?0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100?×?2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3?±?5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion-mobility mass spectrometry.  相似文献   

8.
Xin Huang  Yan Liu  Zhiqiang Liu 《Talanta》2009,78(3):1090-4315
The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (tR) of HPLC, the ESI-MSn data and the structures of analyzed compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring (MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result. The correlations of the isoflavonoids and astragalosides components and the antioxidant activities of Radix Astragali were summarized. The present paper demonstrates that HPLC-ESI-MSn is a powerful method for the characterization of the principal components and evaluation of the antioxidant activity of Chinese medicinal herbs.  相似文献   

9.
Different chromatographic methods including reversed-phase HPLC led to the isolation and purification of three O-methylated flavonoids; 5,4’-dihydroxy-3,6,7-tri-O-methyl flavone (penduletin) (1), 5,3’-dihydroxy-3,6,7,4’,5’-penta-O-methyl flavone (2), and 5-hydroxy-3,6,7,3’,4’,5’-hexa-O-methyl flavone (3) from Rhamnus disperma roots. Additionlly, four flavonoid glycosides; kampferol 7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-β-D-glucopyranoside (5), quercetin 7-O-α-L-rhamnopyranoside (6), and kampferol 3, 7-di-O-α-L-rhamnopyranoside (7) along with benzyl-O-β-D-glucopyranoside (8) were successfully isolated. Complete structure characterization of these compounds was assigned based on NMR spectroscopic data, MS analyses, and comparison with the literature. The O-methyl protons and carbons of the three O-methylated flavonoids (1–3) were unambiguously assigned based on 2D NMR data. The occurrence of compounds 1, 4, 5, and 8 in Rhamnus disperma is was reported here for the first time. Compound 3 was acetylated at 5-OH position to give 5-O-acetyl-3,6,7,3’,4’,5’-hexa-O-methyl flavone (9). Compound 1 exhibited the highest cytotoxic activity against MCF 7, A2780, and HT29 cancer cell lines with IC50 values at 2.17 µM, 0.53 µM, and 2.16 µM, respectively, and was 2–9 folds more selective against tested cancer cell lines compared to the normal human fetal lung fibroblasts (MRC5). It also doubled MCF 7 apoptotic populations and caused G1 cell cycle arrest. The acetylated compound 9 exhibited cytotoxic activity against MCF 7 and HT29 cancer cell lines with IC50 values at 2.19 µM and 3.18 µM, respectively, and was 6–8 folds more cytotoxic to tested cancer cell lines compared to the MRC5 cells.  相似文献   

10.
Breonadia salicina (Vahl) Hepper and J.R.I. Wood is widely used in South Africa and some other African countries for treatment of various infectious diseases such as diarrhea, fevers, cancer, diabetes and malaria. However, little is known about the active constituents associated with the biological activities. This study is aimed at exploring the metabolomics profile and antioxidant constituents of B. salicina. The chemical profiles of the leaf, stem bark and root of B. salicina were comprehensively characterized using proton nuclear magnetic resonance (1H-NMR) spectroscopy and ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The antioxidant activities of the crude extracts, fractions and pure compounds were determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays. A total of 25 compounds were tentatively identified using the UPLC-QTOF-MS. Furthermore, the 1H-NMR fingerprint revealed that the different parts of plant had differences and similarities among the different crude extracts and fractions. The crude extracts and fractions of the root, stem bark and leaf showed the presence of α-glucose, β-glucose, glucose and fructose. However, catechin was not found in the stem bark crude extracts but was found in the fractions of the stem bark. Lupeol was present only in the root crude extract and fractions of the stem bark. Furthermore, 5-O-caffeoylquinic acid was identified in the methanol leaf extract and its respective fractions, while the crude extracts and fractions from the root and dichloromethane leaf revealed the presence of hexadecane. Column chromatography and preparative thin-layer chromatography were used to isolate kaempferol 3-O-(2″-O-galloyl)-glucuronide, lupeol, d-galactopyranose, bodinioside Q, 5-O-caffeoylquinic acid, sucrose, hexadecane and palmitic acid. The crude methanol stem bark showed the highest antioxidant activity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity with an IC50 value of 41.7263 ± 7.6401 μg/mL, whereas the root crude extract had the highest reducing power activity with an IC0.5 value of 0.1481 ± 0.1441 μg/mL. Furthermore, the 1H-NMR and UPLC-QTOF-MS profiles showed the presence of hydroxycinnamic acids, polyphenols and flavonoids. According to a literature survey, these phytochemicals have been reported to display antioxidant activities. Therefore, the identified hydroxycinnamic acid (caffeic acid), polyphenol (ellagic acid) and flavonoids (catechin and (epi) gallocatechin) significantly contribute to the antioxidant activity of the different parts of plant of B. salicina. The results obtained in this study provides information about the phytochemistry and phytochemical compositions of Breonadia salicina, confirming that the species is promising in obtaining constituents with medicinal potential primarily antioxidant potential.  相似文献   

11.
Evaluating the quality of herbal medicines by morphological features is a convenient, quick, and practical method compared with other methods that mostly depend on modern instruments. Here, laser microdissection and ultra-performance liquid chromatography are combined with mass spectrometry to map the distribution of secondary metabolites in cells or tissues of a herb itself for correlating its bioactive components and morphological features. The root and rhizome of Rheum palmatum L. were taken as research target, which is the Chinese medicine, Radix et Rhizoma Rhei. According to fluorescent microscopic characteristics, 12 herbal cells or tissues of Radix et Rhizoma Rhei were separated by laser microdissection. Thirty-eight compounds were identified or tentatively characterized in the microdissected tissues. (+)-Catechin, 1-O-galloyl-2-O-cinnamoyl-β-d-glucose, and emodin were found to be the major components in most of the tissues. The brown ergastic substances found in rays of normal and anomalous vascular bundles as well as the parenchymatous cells of rhizome pith and the parenchymatous cells of root xylem contained higher than average amounts of these three components and more kinds of secondary metabolites. Overall, results suggest that Radix et Rhizoma Rhei of larger size and with conspicuous “brocaded patterns” and star spots are of higher quality as they tend to have greater contents of bioactive components. The study provides quantitative and specific criteria by which the quality of Radix et Rhizoma Rhei can be judged. This research also established a new, reliable, and practical method for direct profiling and imaging of secondary metabolites in any herbal tissue.
Figure
Linking macroscopic features with bioactive components by tissue-specific chemical profiling  相似文献   

12.
13.
Isocorynoxeine (ICOR) is one of the bioactive oxindole alkaloids in Uncaria species. This study presents the pharmacokinetics and mass balance of ICOR in rats after oral dose of 40.0 mg/kg and intravenous dose of 4.0 mg/kg through detection of ICOR and its in vivo metabolites, using an optimized LC-MS with recoveries ranged from 94 to 104%, accuracy varied from 96 to 103%, and relative standard deviation for assay being less than 5%. ICOR reached its Cmax of 336.7 ng/mL in plasma 3 hr after oral dose. The phase I metabolites of ICOR, 11-hydroxyisocorynoxeine (M1), and 10-hydroxyisocorynoxeine (M2) were detected in rat heart, kidneys, urine, and feces; whereas, in rat liver and bile, M1, M2, along with phase II metabolites, 11-hydroxyisocorynoxeine 11-O-β-D-glucuronide, and 10-hydroxyisocorynoxeine 10-O-β-D-glucuronide were identified. ICOR (77.0%) was excreted into feces and urine after oral administration within 72 hr, 0.93% drained into bile in 8 hr, 17.9% biotransformed into M1 and M2 at a ratio of ca. 1:1, and 0.028% detected in main organs at tmax, in which brain uptake index is 3.2 ng/g. This work affords a developed and validated LC-MS for simultaneous determination of ICOR and its in vivo metabolites with improved precision and accuracy.  相似文献   

14.
The aim of our study was to employ a liquid chromatography coupled with electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS n ) method for the identification of the major components of Resina Draconis extract (RDE) and their metabolites in rat urine. Based on the above, 18 compounds were tentatively identified from the RDE. Among them, 4 compounds were unambiguously characterized by the comparison of the retention time and mass spectra with those of reference compounds and 14 compounds were tentatively identified by comparing the mass spectra with those of literature. In vivo, 21 compounds, including 13 parent compounds and 8 metabolites, were detected in rat urine after oral administration of RDE. The results may be helpful for future research on traditional Chinese medicine.  相似文献   

15.
Several medical plants belonging to the genera Passiflora, Viola, and Crataegus accumulate flavonoid C-glycosides, which likely contribute to their efficacy. Information regarding their phase I and II metabolism in the liver are lacking. Thus, in vitro liver metabolism of orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin, all of which accumulated in Passiflora incarnata L., was investigated by incubation in subcellular systems with human liver microsomes and human liver S9 fraction. All metabolite profiles were comprehensively characterized using HPLC-DAD and UHPLC–MS/MS analysis. Mono-glycosylic flavones of the luteolin-type orientin and isoorientin showed a broad range of mono-glucuronidated and mono-sulfated metabolites, whereas for mono-glycosylic flavones of the apigenin-type vitexin and isovitexin, only mono-glucuronidates could be detected. For di-glycosylic flavones of the apigenin-type schaftosid and isoschaftosid, no phase I or II metabolites were identified. The main metabolite of isoorientin was isolated using solid-phase extraction and prep. HPLC-DAD and identified as isoorientin-3′-O-α-glucuronide by NMR analysis. A second isolated glucuronide was assigned as isoorientin 4′-O-α-glucuronide. These findings indicate that vitexin and isovitexin are metabolized preferentially by uridine 5′-diphospho glucuronosyltransferases (UGTs) in the liver. As only orientin and isoorientin showed mono-sulfated and mono-glucuronidated metabolites, the dihydroxy group in 3′,4′-position may be essential for additional sulfation by sulfotransferases (SULTs) in the liver. The diglycosylic flavones schaftoside and isoschaftoside are likely not accepted as substrates of the used liver enzymes under the chosen conditions.  相似文献   

16.
Taxilli Herba (TH) is a well-known traditional Chinese medicine (TCM) with a wide range of clinical application. However, there is a lack of comprehensive research on its chemical composition in recent years. At the same time, Taxillus chinensis (DC) Danser is a semi parasitic plant with abundant hosts, and its chemical constituents varies due to hosts. In this study, the characterization of chemical constituents in TH was analyzed by ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS). Moreover, partial least squares discriminant analysis (PLS-DA) was applied to reveal the differential constituents in TH from different hosts based on the qualitative information of the chemical constituents. Results showed that 73 constituents in TH were identified or tentatively presumed, including flavonoids, phenolic acids and glycosides, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced by the fragmentation behavior of the major constituents. In addition, 23 differential characteristic constituents were screened based on variable importance in projection (VIP) and p-value. Among them, quercetin 3-O-β-D-glucuronide, quercitrin and hyperoside were common differential constituents. Our research will contribute to comprehensive evaluation and intrinsic quality control of TH, and provide a scientific basis for the variety identification of medicinal materials from different hosts.  相似文献   

17.
Separation of Flavonoids from the Leaves of Oroxylum indicum by HSCCC   总被引:1,自引:0,他引:1  
A high-speed counter-current chromatography system (HPCCC) capable of rapid processing has been employed to separate seven flavonoids from a methanolic extract of the leaves of Oroxylum indicum by a one-step isocratic elution using a chloroform–methanol–water (9.5:10:5) two-phase system. LC, MS and NMR have identified the components from the extract as chrysin, baicalein, baicalein-7-O-glucoside, baicalein-7-O-diglucoside, chrysin-7-O-glucuronide, baicalein-7-O-glucuronide, and a chrysin-diglucoside. Baicalein-7-O-glucuronide and chrysin-7-O-glucuronide have been separated from this plant by HSCCC for the first time. The present study also reports a new chrysin-diglucoside from the leaf extract. The results demonstrate that HSCCC is a powerful separation tool and can contribute to identifying and quantifying plant ingredients.  相似文献   

18.
To characterize of the constituents in rat urine after oral administration of Radix Astragali decoction, a HPLC-DAD-MS/MS technique had been developed. Urine collected from 0 to 24 h, after administration, was purified using a C18 solid-phase extraction cartridge, and then detected by an on-line MS/MS detector. By comparing the retention times and MS/MS data with those obtained from authentic compounds and the published data, a total of 11 compounds including six flavonoids, one dipeptide, one triterpenoid and three of their metabolites in urine were identified. Compounds daidzein, genistein, quercetin, L-asparamide-D-phenylalanine, 4,2′,4′-trihydroxychalcone, Astragaloside-IV, daidzein sulfate, and kaempferol sulfate were for the first time detected by HPLC-MS/MS technique in urine. The present research results success-fully narrowed the range of effective constituents to be found in Astragalus membranaceus and would be useful for the following action mechanism research of this traditional Chinese medicine in treating various diseases.  相似文献   

19.
Radix Polygalae, the dried roots of Polygala tenuifolia and P. sibirica , is one of the most well‐known traditional Chinese medicinal plants. It is an important medicinal plant that has been used as a sedative and to improve memory for a number of years in most of Asia. However, the in vivo constituents of the multiple constituents from Radix Polygalae remain unknown. In the current study, ultra high performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry and the MarkerLynxTM software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. A rapid and efficient method for the characterization of multiple constituents in the herbal medicine Radix Polygalae by ultra high performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry is described. In total, 35 compounds in the Radix Polygalae and 13 compounds absorbed into blood were characterized. Of the 35 compounds in vitro, ten were reported for first time. In the 13 compounds in vivo, six were prototype components and seven were metabolites were also elucidated for first time. This work narrowed the range of screening the potentially bioactive components and provided a basis for the quality control and mechanism of action.  相似文献   

20.
The Thai medicinal plant Mitragyna speciosa (Kratom in Thai) is misused as a herbal drug of abuse. During studies on the main Kratom alkaloid mitragynine (MG) in rats and humans, several dehydro analogs could be detected in urine of Kratom users, which were not found in rat urine after administration of pure MG. Questions arose as to whether these compounds are formed from MG only by humans or whether they are metabolites formed from the second abundant Kratom alkaloid paynantheine (PAY), the dehydro analog of MG. Therefore, the aim of the presented study was to identify the phase I and II metabolites of PAY in rat urine after administration of the pure alkaloid. This was first isolated from Kratom leaves. Liquid chromatography–linear ion trap mass spectrometry provided detailed structure information of the metabolites in the MSn mode particularly with high resolution. Besides PAY, the following phase I metabolites could be identified: 9-O-demethyl PAY, 16-carboxy PAY, 9-O-demethyl-16-carboxy PAY, 17-O-demethyl PAY, 17-O-demethyl-16,17-dihydro PAY, 9,17-O-bisdemethyl PAY, 9,17-O-bisdemethyl-16,17-dihydro PAY, 17-carboxy-16,17-dihydro PAY, and 9-O-demethyl-17-carboxy-16,17-dihydro PAY. These metabolites indicated that PAY was metabolized via the same pathways as MG. Several metabolites were excreted as glucuronides or sulfates. The metabolism studies in rats showed that PAY and its metabolites corresponded to the MG-related dehydro compounds detected in urine of the Kratom users. In conclusion, PAY and its metabolites may be further markers for a Kratom abuse in addition of MG and its metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号