首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
敦惠娟  翟秉详  邓长元  钮敏  李继红 《色谱》1997,15(6):502-504
采用毛细管气相色谱法对9种缓慢生长分枝杆菌的化学成分进行了分析。结果表明,不同菌种的色谱图存在明显的差异。对75株临床菌株进行色谱法鉴别,并与传统生物学鉴定法作了对比。  相似文献   

2.
A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.  相似文献   

3.
Benzoxazinorifamycin reacted with various secondary amines to yield various 5'-substituted aminobenzoxazinorifamycin derivatives. The derivatives exhibited potent activities against gram-positive bacteria and mycobacteria. The antimicrobial activities of these compounds against Mycobacterium tuberculosis and Mycobacterium intracellulare were superior to those of rifampicin. Some of these compounds showed good plasma levels after oral administration in rats.  相似文献   

4.
Towards the proteome of Mycobacterium tuberculosis   总被引:14,自引:0,他引:14  
Human tuberculosis is caused by the intracellular pathogen Mycobacterium tuberculosis. Sequencing of the genome of M. tuberculosis strain H37Rv has predicted 3924 open reading frames, and enabled identification of proteins from this bacterium by peptide mass fingerprinting. Extracellular proteins from the culture medium and proteins in cellular extracts were examined by two-dimensional gel electrophoresis using immobilized pH gradient technology. By mass spectrometry and immunodetection, 49 culture filtrate proteins and 118 lysate proteins were identified, 83 of which were novel. To date, 288 proteins have been identified in M. tuberculosis proteome studies, and a list is presented which includes all identified proteins (available at http://www.ssi.dk/publichealth/tbimmun). The information obtained from the M. tuberculosis proteome so far is discussed in relation to the information obtained from the complete genome sequence.  相似文献   

5.
Secreted proteins of Mycobacterium tuberculosis are implicated in its disease pathogenesis and so are considered as potential diagnostic and vaccine candidates. The search for these has been slow, even though the entire genome sequence of M. tuberculosis is now available; of the 620 protein spots resolved by 2-D gel electrophoresis, 114 secreted proteins have been identified, but for only 13 has the primary structure been partly characterized. For comparison, in this top down mass spectrometry (MS) approach the secreted proteins were precipitated from cell culture filtrate, resuspended, and examined directly by electrospray ionization (ESI) Fourier transform MS. The ESI spectra of three precipitates showed 93, 535, and 369 molecular weight (M(r)) values, for a total of 689 different values. However, only approximately 10% of these values matched (+/-1 Da) the DNA predicted M(r) values, but these identifications were unreliable. Of nine molecular ions characterized by MS/MS, only one protein match was confirmed, and its isotopic molecular ions were overlapped by those of another protein. MS/MS identified a total of ten proteins by sequence tag search, of which three were unidentified previously. The low success of M(r) matching was due to unusually extensive posttranslational modifications, including loss of a signal sequence, loss of the N-terminal residue, proteolytic degradation, oxidation, and glycosylation. Although in eubacteria the latter is relatively rare, a 9 kDa protein showed 7 hexose attachments and two 20 kDa proteins each had 20 attachments. For MS/MS, electron capture dissociation was especially effective.  相似文献   

6.
We employed an evolutionary genomics approach to detect genes under lineage-specific positive selection for the two closely related Mycobacterium tuberculosis strains, the virulent H37Rv and the avirulent H37Ra, with the clinical isolate CDC1551 as the outgroup. We found six H37Rv-specific and six H37Ra-specific positively selected genes, among which the former comprised a flavoprotein, a RNA polymerase sigma factor SigM, two PPE family proteins, as well as two hypothetical proteins, while the latter consisted of a dehydrogenase, a (3R)-hydroxyacyl-ACP dehydratase subunit HadA, a PPE family protein, and three PE-PGRS family proteins. Obviously, the PE/PPE/PE-PGRS family proteins were the main targets of positive selection. The functional discussion of our findings implied that those positively selected genes were highly involved in antigen variations and immune evasions of Mycobacterium tuberculosis.  相似文献   

7.
A series of eighteen novel esters of salicylanilides with benzenesulfonic acid were designed, synthesized and characterized by IR, 1H-NMR and 13C-NMR. They were evaluated in vitro as potential antimycobacterial agents towards Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii. In general, the minimum inhibitory concentrations range from 1 to 500 μmol/L. The most active compound against M. tuberculosis was 4-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)-phenyl benzenesulfonate, with MIC of 1 μmol/L and towards M. kansasii its isomer 5-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (MIC of 2-4 μmol/L). M. avium was the less susceptible strain. However, generally, salicylanilide benzenesulfonates did not surpass the activity of other salicylanilide esters with carboxylic acids.  相似文献   

8.
The lipidic envelope of Mycobacterium tuberculosis promotes virulence in many ways, so we developed a lipidomics platform for a broad survey of cell walls. Here we report two new databases (MycoMass, MycoMap), 30 lipid fine maps, and mass spectrometry datasets that comprise a static lipidome. Further, by rapidly regenerating lipidomic datasets during biological processes, comparative lipidomics provides statistically valid, organism-wide comparisons that broadly assess lipid changes during infection or among clinical strains of mycobacteria. Using stringent data filters, we tracked more than 5,000 molecular features in parallel with few or no false-positive molecular discoveries. The low error rates allowed chemotaxonomic analyses of mycobacteria, which describe the extent of chemical change in each strain and identified particular strain-specific molecules for use as biomarkers.  相似文献   

9.
《Analytical letters》2012,45(10):1242-1253
Detection of tuberculosis and related diseases caused by mycobacteria is costly, time-consuming, and labor-intensive. Here a new phage-modified piezoelectric system for rapid and specific detection of mycobacteria was developed. In this system, interdigital gold electrode immobilized with lytic phage was used as a probe in place of a steel electrode in the multi-channel series piezoelectric quartz crystal (MSPQC) system. The probe was directly connected to the piezoelectric detection system. Mycobacterium was specifically captured to the phage-modified electrode and then lysed by immobilized phage, which caused the electrode electrical properties change. This change can be sensitively monitored by the piezoelectric detection system. The detection time of Mycobacterium smegmatis was less than 2 hours and a detection limit of 103cfu mL?1 was obtained. Additionally, it was successfully used to detect Mycobacterium tuberculosis. The developed system using phage-modified interdigital electrode showed high specificity and reproducibility for mycobacterium detection. Compared with the MSPQC system, the proposed system was faster and more specific.  相似文献   

10.
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. The identification of mycobacteria in tissue sections can be made through a microscopic examination with fite-faraco staining or PCR method. Paraffin blocks from four patients with leprosy were retrieved from The Pathologic Department of Dr.Soetomo Hospital, Surabaya. Two cases were from paucibacillary leprosy patients with no mycobacteria stained by fite-faraco. PCR assay showed a negative result. The other two cases were multibacillary leprosy with many bacteria stained by fite-faraco. PCR assay showed a positive result.  相似文献   

11.
Progression of drug resistance among bacterial and fungal pathogens justifies the development of novel antimicrobial agents. Thus, a series of novel sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones have been designed and synthesised. The urea derivatives were obtained by the reaction of sulphamethoxazole and isocyanates, and their cyclisation to imidazolidine-2,4,5-triones was performed via oxalyl chloride. All synthesised derivatives were evaluated in vitro to determine their activity against gram-positive and gram-negative bacteria, fungi, Mycobacterium tuberculosis, and atypical mycobacteria and their cytotoxicity. The growth of mycobacteria was inhibited within the range of 4–1000 µM and M. tuberculosis was the least-susceptible strain. 4-(3-Heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulphonamide was identified as the most promising compound because it exhibited the highest activity against atypical mycobacteria at minimum inhibitory concentrations, from 4 µM, and with acceptable toxicity (selectivity indices for M. avium and M. kansasii higher than 16 and 62.5, respectively). Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited at concentrations starting from 125 µM, whereas the investigated derivatives exhibited almost no antifungal potency and activity against gram-negative species.  相似文献   

12.
The specificity of Mycobacterium tuberculosis anti-PGL-Tb1 antiserum prepared in rabbits was evaluated by an enzyme-linked immunosorbent assay. It was found that the antiserum immunoreacted with its homologous antigen but not with purified phenolic glycolipids from M. bovis BCG (mycoside B), M. kansasii (mycoside A), M. leprae (PGL-I) or M. marinum (mycoside G).The analysis of chloroform/methanol extracts from 15 strains of M. tuberculosis showed that all formed the antigen except the type strain (strain H37Rv). Chloroform/methanol extracts of M. bovis BCG, M. xenopi, M. flavescens and M. fallax cross-reacted with the immune serum. However, chloroform/methanol extracts of representative strains of 18 other mycobacterial species did not reach, therefore indicating that these did not contain the antigen.  相似文献   

13.
Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. β-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of β-lactamases that destroy the electrophilic β-lactam warhead. We have developed novel β-lactam conjugates, which exploit this inherent β-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA “warhead” as well as the β-lactam “promoiety” contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.  相似文献   

14.
Tuberculosis is highly persistent and displays phenotypic resistance to high concentrations of antimicrobials. Recent reports exhibited that Mycobacterium tuberculosis biofilm was implicated to its pathogenicity and drug resistance. In this study, there were 47 kinds of differential proteins in the biofilm of M. tuberculosis H37Rv cells compared with the planktonic bacteria, and 37 proteins were nonredundant and identified by proteomics approach, such as 2DE and LC‐MS/MS. Moreover, six kinds of proteins were identified as HspX, which were conservative and highly expressed in biofilm. Note that 47 differential proteins were divided into seven categories, such as cell wall and cell processes, conserved hypotheticals, intermediary metabolism and respiration, and so on by TUBERCULIST. The Gene Ontology classification results showed that the largest protein group involved in metabolism, binding proteins, and catalytic function accounts for 30% and 57% of all identified proteins, respectively. Moreover, the protein interaction network analyzed by STRING showed that the minority proteins such as RpoA, SucC, Cbs, Tuf, DnaK, and GroeL in the interaction network have high network connectivity. These results implied that the proteins involved in metabolic process and catalytic function and the minority proteins mentioned above may play an important role in M. tuberculosis biofilm formation. To our knowledge, this is the first report about differential proteins between biofilm and planktonic M. tuberculosis, which provided the potential antigens for vaccines and target proteins for anti‐mycobacterial drugs.  相似文献   

15.
Catalase-peroxidase is a multi-functional heme-dependent enzyme which is well known for its ability to carry out both catalatic and peroxidatic reactions. Catalase-peroxidase from Mycobacterium tuberculosis(mtCP) is of particular interest because this enzyme activates the pro-antitubercular drug isoniazid. It is estimated that 2 billion people are infected with M. tuberculosis, the principal causative agent of tuberculosis, and that 2 million people die from the disease each year. The rise of drug-resistant strains continues to be of critical concern and it is well documented that mutations which reduce activity or inactivate mtCP lead to increased levels of isoniazid resistance in M. tuberculosis. The recent determination of the crystal structure for M. tuberculosis mtCP has aided the understanding of how the enzyme functions and provides a three-dimensional framework for testing hypotheses about the roles of various residues in the active site. Here we report site-directed mutagenesis studies of three conserved residues located near the heme of mtCP, His-108, Trp-107 and Trp-321 including the construction of the double mutant W107F-W321F. Resulting mutants have been purified and their catalatic and peroxidatic activities have been determined. Data are compared in the context of related studies aimed at dissecting the roles of these residues in the different activities of the enzyme. Analyses of single and double mutants studied here emphasise that the hydrogen bonding network surrounding the heme in the active site appears more important for maintenance of catalatic rather than peroxidatic activity in CP enzymes.  相似文献   

16.
Pathogenic mycobacteria, which cause multiple diseases including tuberculosis, secrete factors essential for disease via the ESX-1 protein export system and are partially protected from host defenses by their lipid-rich cell envelopes. These pathogenic features of mycobacterial biology are believed to act independently of each other. Key ESX-1 components include three ATPases, and EccA1 (Mycobacterium marinum MMAR_5443; M.?tuberculosis Rv3868) is the least characterized. Here we show that M.?marinum EccA1's ATPase activity is required for ESX-1-mediated protein secretion, and surprisingly for the optimal synthesis of mycolic acids, integral cell-envelope lipids. Increased mycolic acid synthesis defects, observed when an EccA1-ATPase mutant is expressed in an eccA1-null strain, correlate with decreased in?vivo virulence and intracellular growth. These data suggest that two mycobacterial virulence hallmarks, ESX-1-dependent protein secretion and mycolic acid synthesis, are critically linked via EccA1.  相似文献   

17.
The storage of triacylglycerols (TAGs) is essential for non-replicating persistence relevant to survival and the re-growth of mycobacteria during their exit from non-replicating state stress conditions. However, the detailed structures of this lipid family in mycobacteria largely remain unexplored. In this contribution, we describe a multiple-stage linear ion-trap mass spectrometric approach with high resolution mass spectrometry toward direct structural analysis of the TAGs, including a novel lipid subclass previously defined as monomeromycolyl diacylglycerol (MMDAG) isolated from biofilm of Mycobacterium smegmatis, a rapidly growing, non-pathogenic mycobacterium that has been used as a tool for molecular analysis of mycobacteria. Our results demonstrate that the major isomer in each of the molecular species of TAGs and MMDAGs consists of the common structure in which Δ918:1- and 16:0-fatty acyl substituents are exclusively located at sn-1 and sn-2, respectively. Several isomers were found for most of the molecular species, and thus hundreds of structures are present in this lipid family. More importantly, this study revealed the structures of MMDAG, a novel subclass of TAG that has not been previously reported by direct mass spectrometric approaches.  相似文献   

18.
Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis   总被引:1,自引:0,他引:1  
The active multidrug efflux pump (EP) has been described as one of the mechanisms involved in the natural drug resistance of bacteria, such as mycobacteria. As a result, the development of efflux pumps inhibitors (EPIs) is an important topic. In this study, a checkerboard synergy assay indicated that farnesol both decreased the minimum inhibitory concentration (MIC) of ethidium bromide (EtBr) 8-fold against Mycobacterium smegmatis (M. smegmatis) mc2155 ATCC 700084 when incorporated at a concentration of 32 μg/mL (FICI = 0.625) and decreased MIC 4-fold at 16 μg/mL (FICI = 0.375). Farnesol also showed synergism when combined with rifampicin. A real-time 96-well plate fluorometric method was used to assess the ability of farnesol to inhibit EPs in comparison with four positive EPIs: chlorpromazine, reserpine, verapamil, and carbonyl cyanide m-chlorophenylhydrazone (CCCP). Farnesol significantly enhanced the accumulation of EtBr and decreased the efflux of EtBr in M. smegmatis; these results suggest that farnesol acts as an inhibitor of mycobacterial efflux pumps.  相似文献   

19.
Structural aspects of lipoarabinomannans (LAM) from Mycobacterium tuberculosis and Mycobacterium smegmatis were investigated by using mild acid hydrolysis in combination with Fourier-transform ion cyclotron resonance (FT-ICR), and quadrupole ion trap mass spectrometry. Exact mass measurements with less than 2.5 ppm mass error confirmed the presence of a series of arabinose oligomers (Ara(n); n = 2-7) as the major components observed following mild acid hydrolysis of both M. tuberculosis and M. smegmatis LAM. However, the mass spectrum of the resulting LAM extract also revealed a highly-abundant distribution of ions that exact mass measurements identified as mannose-linked arabinose species, Ara(n)Man(m) + Na+ (n = 1-6; m = 1-3). The observed mannose caps were linked to arabinose species as mono-, di-, and trimannose units, and the ratio of the mono-, di-, and trimannose caps was determined to be 1.00:9.00:1.15, respectively, different from previous reports. Analysis of the linkage of lithiated arabinose trimer standards was accomplished with MS3 experiments and the information generated was used to identify linkages of arabinose trimers generated by mild acid hydrolysis of M. tuberculosis and M. smegmatis LAM. The MS3 spectra confirmed the linkage of arabinose trimers from M. smegmatis and M. tuberculosis LAM as predominantly alpha(1 --> 5), alpha(1 --> 5).  相似文献   

20.
The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (KD). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl ( 10 f ) and tert-butyl ( 10 g ) compounds displaying optimal activity (MIC 1.562 μg/mL, KD 0.22 μM ( 10 f ) and 4.81 μM ( 10 g )). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5–6, molecular volume >340 Å3, topological polar surface area <40 Å2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号