首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Glucose oxidase showed direct electrochemical transfer at glassy carbon electrodes immobilized with carbon nanotube‐gold colloid (CNT‐Au) composites with poly(diallydimethylammonium chloride) (PDDA) coatings. The modified electrode (GC/CNT/Au/PDDA‐GOD) was employed for the amperometric determination of glucose. Under optimal conditions, the biosensor displayed linear response to glucose from 0.5 to 5 mM with a sensitivity of 2.50 mA M?1 at an applied potential of ?0.3 V (vs. Ag|AgCl reference).  相似文献   

2.
《Electroanalysis》2017,29(5):1267-1277
Graphite rod (GR) modified with electrochemicaly deposited gold nanoparticles (AuNPs) and adsorbed glucose oxidase (GOx) was used in amperometric glucose biosensor design. Enzymatic formation of polypyrrole (Ppy) on the surface of GOx/AuNPs/GR electrode was applied in order to improve analytical characteristics and stability of developed biosensor. The linear glucose detection range for Ppy/GOx/AuNPs/GR electrode was dependent on the duration of Ppy‐layer formation and the linear interval was extended up to 19.9 mmol L−1 after 21 h lasting synthesis of Ppy. The sensitivity of the developed biosensor was determined as 21.7 μA mM−1 cm−2, the limit of detection – 0.20 mmol L−1. Ppy/GOx/AuNPs/GR electrodes demonstrated advanced good stability (the t 1/2 was 9.8 days), quick detection of glucose (within 5 s) in the wide linear interval. Additionally, formed Ppy layer decreased the influence of electroactive species on the analytical signal. Developed biosensor is suitable for the determination of glucose in human serum samples.  相似文献   

3.
A novel electrochemical biosensor design for glucosinolate determination involving bulk‐incorporation of the enzymes glucose oxidase and myrosinase into a colloidal gold ‐ multiwalled carbon nanotubes composite electrode using Teflon as binder is reported. Myrosinase catalyzes the hydrolysis of glucosinolate forming glucose, which is enzymatically oxidized. The generated hydrogen peroxide was electrochemically detected without mediator at the nanostructured composite electrode at E=+0.5 V vs. Ag/AgCl. Under the optimized conditions, the bienzyme MYR/GOx‐Aucoll‐MWCNT‐Teflon exhibited improved analytical characteristics for the glucosinolate sinigrin with respect to a biosensor constructed without gold nanoparticles, i.e. a MYR/GOx‐MWCNT‐Teflon electrode, as well as with respect to other glucosinolate biosensor designs reported in the literature. The biosensor exhibits good repeatability of the amperometric measurements and good interassay reproducibility. Furthermore, the biosensor exhibited a high selectivity with respect to various potential interferents. The usefulness of the biosensor was evaluated by the determination of glucosinolate in Brussel sprout seeds.  相似文献   

4.
利用纳米金(Au NPs)与还原氧化石墨烯(rGO)复合纳米材料制备了葡萄糖氧化酶生物传感器并用于饮料中葡萄糖含量的检测。将壳聚糖作为还原剂及稳定剂,通过一步法合成了Au NPs-rGO复合材料,并通过物理吸附固定葡萄糖氧化酶(GOx)来制作GOx生物传感器。该传感器在磷酸盐缓冲溶液(0.1 mol/L,p H6.0)中,-0.45 V(vs.Ag/Ag Cl)电位下电流法检测葡萄糖含量,线性检测范围为0.01~0.88 mmol/L,灵敏度为22.54μA·mmol-1·L·cm-2,检出限为1.01μmol/L,且表观米氏常数为0.497 mmol/L。该传感器用于多种饮料中葡萄糖含量的直接检测,结果满意。  相似文献   

5.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

6.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)–CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL–CNT composite paper. Cyclic voltammograms revealed that the GOx/CL–CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.  相似文献   

7.
Gold nanoparticles have demonstrated to be a very useful material for the construction of stable and sensitive glucose oxidase (GOx) amperometric biosensors. However, as for other enzyme electrodes, the lack of specificity for glucose limits their practical applications. Coupling biosensor responses with chemometric tools can be used to solve complex analytical signals from mixtures of species with similar properties. In this work, an amperometric biosensor based on a colloidal gold—cysteamine—gold disk electrode with the enzyme GOx and a redox mediator, tetrathiafulvalene (TTF), co‐immobilised atop the modified electrode, was used for the simultaneous determination of glucose and its common interferences, ascorbic acid and uric acid, in mixtures. Analytical data obtained from cyclic voltammograms generated with the biosensor were processed using an artificial neural network (ANN), and the separate quantification of the analytes over a range of 0.1–1 mM each was performed without any pretreatment. In all cases, the correlation coefficients obtained were higher than 0.99 and the mean prediction error was less than 1.7%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The electrochemistry of glucose oxidase (GOx) immobilized on a graphite rod electrode modified by gold nanoparticles (Au-NPs) was studied. Two types of amperometric glucose sensors based on GOx immobilized and Au-NPs modified working electrode (Au-NPs/GOx/graphite and GOx/Au-NPs/graphite) were designed and tested in the presence and the absence of N-methylphenazonium methyl sulphate in different buffers. Results were compared to those obtained with similar electrodes not containing Au-NPs (GOx/graphite). This study shows that the application of Au-NPs increases the rate of mediated electron transfer. Major analytical characteristics of the amperometric biosensor based on GOx and 13 nm diameter Au-NPs were determined. The analytical signal was linearly related to glucose concentration in the range from 0.1 to 10 mmol L?1. The detection limit for glucose was found within 0.1 mmol L?1 and 0.08 mmol L?1 and the relative standard deviation in the range of 0.1–100 mol L?1 was 0.04–0.39%. The τ1/2 of V max characterizes the storage stability of sensors: this parameter for the developed GOx/graphite electrode was 49.3 days and for GOx/Au-NPs/graphite electrode was 19.5 days. The sensor might be suitable for determination of glucose in beverages and/or in food.  相似文献   

9.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

10.
A new approach to constructing an enzyme-containing film on the surface of a gold electrode for use as a biosensor is described. A basic multilayer film (BMF) of (PDDA/GNPs) n /PDDA was first constructed on the gold electrode by electrostatic layer-by-layer self-assembly of poly(diallyldimethylammonium chloride) (PDDA) and gold nanoparticles (GNPs). Glucose oxidase (GOx) was then sorbed into this BMF by dipping the BMF-modified electrode into a GOx solution. The assembly of the BMF was monitored and tested via UV-vis spectroscopy and cyclic voltammetry (CV). The ferrocenemethanol-mediated cyclic voltammograms obtained from the gold electrode modified with the (PDDA/GNPs) n /PDDA/GOx indicated that the assembled GOx remained electrocatalytically active for the oxidation of glucose. Analysis of the voltammetric signals showed that the surface coverage of active enzyme was a linear function of the number of PDDA/GNPs bilayers. This result confirmed the penetration of GOx into the BMF and suggests that the BMF-based enzyme film forms in a uniform manner. Electrochemical impedance measurements revealed that the biosensor had a lower electron transfer resistance (R et) than that of a sensor prepared by layer-by-layer assembly of PDDA and GOx, due to the presence of gold nanoparticles. The sensitivity of the biosensor for the determination of glucose, which could be controlled by adjusting the number of PDDA/GNPs bilayers, was investigated.  相似文献   

11.
A high-performance amperometric glucose biosensor was developed, based on immobilization of glucose oxidase (GOx) on a copper (Cu) nanoparticles/chitosan (CHIT)/carbon nanotube (CNT)-modified glassy carbon (GC) electrode. The Cu and CNT had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide in the matrix of biopolymer CHIT. The Cu/CHIT/CNT modified GC electrode could amplify the reduction current of hydrogen peroxide greatly. Besides, the Cu/CHIT/CNT modified GC electrode reduces hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents. With GOx as an enzyme model, a new glucose biosensor was fabricated. The sensitivity of the sensor is due not only to the large microscopic area but also to the high efficiency of transformation of H2O2 generated by enzymatic reaction to current signal. The biosensor exhibited excellent sensitivity (the detection limit is down to 0.02 mM), fast response time (less than 4 sec), wide linear range (from 0.05 to 12 mM), and perfect selectivity. Correspondence: Wanzhi Wei, State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China  相似文献   

12.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

13.
An amperometric glucose biosensor is developed that is based on immobilization of glucose oxidase (GOD) in a composite film of poly(o-aminophenol) (POAP) and carbon nanotubes (CNT), which are electrochemically co-polymerized at a gold (Au) electrode. Because of the high surface per volume ratio and excellent electrical conductivity of CNT, the biosensor based on an Au/POAP/CNT/GOD electrode has lower detection limit (0.01 mM), larger maximum response current (0.24 mA cm(-2)) and higher sensitivity (11.4 mA M(-1) cm(-2)) than the values of the biosensor based on an Au/POAP/GOD electrode. Additionally, the biosensor shows fast response time, large response current, and good anti-interferent ability for ascorbic acid, uric acid and acetaminophen. Good reproducibility and stability of the biosensor are also observed.  相似文献   

14.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   

15.
We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0.59?s?1. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01?mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10?days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins.
Figure
This paper reports a novel amperometric biosensor for glucose based on the immobilization of the glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor exhibited high sensitivity, good stability and selectivity.  相似文献   

16.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

17.
将NaAuCl4、葡萄糖氧化酶(GOx)和葡萄糖混合,借一步酶促反应制得吸附GOx的金纳米颗粒(AuNPs),再通过滴干修饰法研制了Nafion/GOx-AuNPs修饰的玻碳(GC)电极,并考察了该酶电极上GOx的直接电化学和生物传感性能. 这种酶法合成的GOx-AuNPs复合物有良好的酶直接电化学活性,也保持了GOx的生物活性,似可归因于酶法合成的纳米金更接近酶氧化还原活性中心的缘故. 该酶电极在-0.4 V(vs. SCE)电位下,其稳态电流下降与葡萄糖浓度(0.5 4 mmol·L-1)成正比,检测下限0.2 mol·L-1.  相似文献   

18.
Song Qu  Jilie Kong  Gang Chen 《Talanta》2007,71(3):1096-1102
An electrochemical sensing platform was developed based on the magnetic loading of carbon nanotube (CNT)/nano-Fe3O4 composite on electrodes. To demonstrate the concept, nano-Fe3O4 was deposited by the chemical coprecipitation of Fe2+ and Fe3+ in the presence of CNTs in an alkaline solution. The resulting magnetic nanocomposite brings new capabilities for electrochemical devices by combining the advantages of CNT and nano-Fe3O4 and provides an alternative way for loading CNT on electrodes. The fabrication and the performances of the magnetic nanocomposite modified electrodes have been described. Cyclic voltammetry (CV) and constant potential measurement indicated that the incorporated CNT exhibited higher electrocatalytic activity toward the redox processes of hydrogen peroxide. In addition, chitosan (CTS) has also been introduced into the bulk of the CNT/nano-Fe3O4 composite by coprecipitation to immobilize glucose oxidase (GOx) for sensing glucose. The marked electrocatalytic activity toward hydrogen peroxide permits effective low-potential amperometric biosensing of glucose, in connection with the incorporation of GOx into CNT/Fe3O4/CTS composite. The accelerated electron transfer is coupled with surface renewability. TEM images and XRDs offer insights into the nature of the magnetic composites. The concept of the magnetic loading of CNT nanocomposites indicates great promise for creating CNT-based biosensing devices and expands the scope of CNT-based electrochemical devices.  相似文献   

19.
A novel glucose biosensor has been fabricated and employed as the amperometric detector of a capillary electrophoresis (CE) system. (±)-1-Ferrocenylethylamine and chitosan were successively modified on a 500-µm diameter disc platinum electrode by dip-coating. The modified electrode was subsequently immersed in glucose oxidase (GOx) solution to entrap the enzyme in the chitosan membrane. The primary amino groups of 1-ferrocenylethylamine, GOx, and chitosan were cross-linked by glutaraldehyde to obtain a biosensing membrane so as to reduce leaching of 1-ferrocenylethylamine and GOx. The electrochemical behavior of the target biosensor was investigated. It was demonstrated that the investigated biosensor features fast response, high stability, long lifetime, and ideal compatibility with the CE system. When CE was employed to introduce a glucose plug into the surface of the biosensor, the current response was linear to the glucose concentration in the range of 0.0025 to 2.5 mM with a detection limit of 1.2 µM (S/N = 3) at a working potential of +0.6 V (vs. SCE). The CE-biosensor system was applied to the determination of the glucose level in human serum. The results were satisfactory and in good agreement with the hospital assay results.  相似文献   

20.
Wang J  Musameh M 《The Analyst》2003,128(11):1382-1385
The preparation of an enzyme-dispersed carbon-nanotube (CNT) electrode, based on mixing glucose oxidase (GOx) within CNT, is described. The new binderless biocomposite was packed within a 21-gauge needle and used for amperometric monitoring of glucose. The resulting microsensor offers a low-potential highly selective and sensitive detection of glucose. The high sensitivity and selectivity are coupled to a wide linear range, prolonged lifetime and oxygen independence. About 80% of the GOx activity is retained during a 24 h thermal stress at 90 degrees C, reflecting the enzyme-stabilization action of CNT. The marked electrocatalytic action towards hydrogen peroxide allows highly selective detection of the glucose substrate at -0.1 V (vs. Ag/AgCl) with no interferences from coexisting ascorbic acid, acetaminophen or uric acid. Linearity prevails up to 40 mM glucose (with analytically useful signals observed up to 0.1 M). Factors affecting the performance of the CNT-based glucose biosensor were assessed and optimized. The attractive performance of the new needle electrode offers great promise for continuous monitoring of glucose in connection to the management of diabetes, and for the biosensing of other metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号