首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
H. Akcay 《Physics letters. A》2009,373(6):616-620
It is shown that the Dirac equation with scalar and vector quadratic potentials and a Coulomb-like tensor potential can be solved exactly. The bound state solutions for equal vector and scalar potentials are obtained. The limit of zero tensor coupling is investigated. The case of equal vector and scalar potentials with opposite sign is also studied. The pseudospin symmetry and its breaking by the tensor interaction are discussed.  相似文献   

2.
We obtain the exact analytical solution of the Klein-Gordon equation for the exponential vector and scalar potentials by using the asymptotic iteration method. For the scalar potential greater than the vector potential case, the exact bound state energy eigenvalues and corresponding eigenfunctions are presented. The bound state eigenfunction solutions are obtained in terms of the confluent hypergeometric functions.  相似文献   

3.
We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms.  相似文献   

4.
In linearized general relativity the metric ofa body is described by a scalar potential and athree-vector potential. We here present a simpletransformation derivation of the linearized metric interms of these potentials, and calculate the exactscalar and vector potentials for a field with oblatespheroidal symmetry. The results for the externalpotentials do not depend on details of the densitydistribution inside the earth; both the scalar and vectorpotentials are fully determined by the total mass, thetotal angular momentum, and a radial parameter, all ofwhich are accurately known from observation. The scalar potential is accurate to roughly10-6 and the vector potential, which hasnever been accurately measured, should be accurate toabout 10-5. Applications include an accuratetreatmen t of the details of the motion of satellites, and theprecession of a gyroscope in earth orbit.  相似文献   

5.
We discuss the Kirchhoff gauge in classical electrodynamics. In this gauge, the scalar potential satisfies an elliptical equation and the vector potential satisfies a wave equation with a nonlocal source. We find the solutions of both equations and show that, despite of the unphysical character of the scalar potential, the electric and magnetic fields obtained from the scalar and vector potentials are given by their well-known retarded expressions. We note that the Kirchhoff gauge pertains to the class of gauges known as the velocity gauge.  相似文献   

6.
In the present paper we solve the Dirac equation with Davidson potential by Nikiforov-Uvarov method. The Dirac Hamiltonian contains a scalar S and a vector V Davidson potentials. With equal scalar and vector potential, analytical solutions for bound states of the corresponding Dirac equations are found.  相似文献   

7.
New classes of solvable scalar and vector potentials for the Dirac equation are obtained, together with the associated exact Dirac spinors. The method of derivation is based on an a priori constraint between the solutions, leading to an interrelation between the scalar and vector potential in the form ofa Riccati equation. The present note generalizes a series of former articles.  相似文献   

8.
We have solved the Beltrami-Maxwell equations for free space in terms of time-dependent scalar functions, the so-called scalar Beltrami-Hertz potentials. The two Beltrami fields have been represented in terms of scalar Beltrami-Hertz potentials. While the method is formulated for general sources, it is at its most powerful when the impressed source current densities are unidirectional: each Beltrami field, a complex-valued vector, can then be derived from a single scalar Beltrami-Hertz potential. We have calculated the corresponding scalar Green function explicity and given closed-form solutions for dipolar sources. Finally, the connection between the Beltrami-Maxwell formalism and conventional electromagnetic theory has been re-affirmed.  相似文献   

9.
We consider Schrödinger Hamiltonians H, the scalar and vector potential of which may be singular on a closed set of measure zero. Sufficient conditions are given implying that no state vector can have compact support both in the spectral representation of H and in configuration space. These conditions are verified if the scalar potential is locally not too singular as well as for certain strongly singular potentials.  相似文献   

10.
We indicated in our previous work that for QED the role of the scalar potential which appears at the loop level is much smaller than that of the vector potential and is in fact negligible. But the situation is different for QCD, one reason is that the loop effects are more significant because α s is much larger than α, and second the non-perturbative QCD effects may induce a sizable scalar potential. In this work, we study phenomenologically the contribution of the scalar potential to the spectra of charmonia, bottomonia and b(c) families. Taking into account both vector and scalar potentials, by fitting the well measured charmonia and bottomonia spectra, we re-fix the relevant parameters and test them by calculating other states of not only the charmonia and bottomonia families, but also the b family. We also consider the Lamb shift of the spectra.  相似文献   

11.
We indicated in our previous work that for QED the contributions of the scalar potential, which appears at the loop level, is much smaller than that of the vector potential, and in fact negligible. But the situation may be different for QCD, the reason being that the loop effects are more significant because α<,s> is much larger than α, and secondly the non-perturbative QCD effects may induce the scalar potential. In this work, we phenomenologically study the contribution of the scalar potential to the spectra of charmonia. Taking into account both vector and scalar potentials, by fitting the well measured charmonia spectra, we re-fix the relevant parameters and test them by calculating other states of the charmonia family. We also consider the role of the Lamb shift and present the numerical results with and without involving the Lamb shift.  相似文献   

12.
T. Barakat 《Annals of Physics》2009,324(3):725-4238
The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, , respectively, are obtained.  相似文献   

13.
We consider the Schrödinger operator with magnetic vector potential and static scalar potential. We show the existence of the wave operators under considerations which allow strong oscillations of the potentials.  相似文献   

14.
The relativistic problem of spinless particles with position-dependent mass subject to kink-like potentials (~tanh αx) is investigated. By using the basic concepts of the supersymmetric quantum mechanics formalism and the functional analysis method, we solve exactly the position-dependent effective mass Klein–Gordon equation with the vector and scalar kink-like potential coupling, and obtain the bound state solutions in the closed form. It is found that in the presence of position-dependent mass there exists the symmetry that the discrete positive energy spectra and negative energy spectra are symmetric about zero energy for the case of a mixed vector and scalar kink-like potential coupling, and in the presence of constant mass this symmetry only appears for the cases of a pure scalar kink-like potential coupling or massless particles.  相似文献   

15.
We consider the Dirac equation in 1+11+1 space–time dimension with vector, scalar and pseudo-scalar coupling. In the traditional spin (or pseudo-spin) symmetry, the difference between (or sum of) the scalar and vector potentials is a constant. Here, however, we introduce an alternative symmetry where the scalar or pseudo-scalar potential is proportional to the vector potential. This leads to a model with significant extensions to supersymmetric quantum mechanics. We present a formal solution of the problem but give explicit analytic results for specific examples.  相似文献   

16.
The pseudospin symmetry in the Makarov potential is investigated systematically by solving the Dirac equation. The analytical solution forthe Makarov potential with pseudospin symmetry is obtained byNikiforov-Uvarov (N-U) method. The eigenfunctions and eigenenergies arepresented with equal mixture of vector and scalar potentials in oppositesigns, for which is exact.  相似文献   

17.
The exact factorization framework is extended and utilized to introduce the electronic-states of correlated electron–photon systems. The formal definitions of an exact scalar potential and an exact vector potential that account for the electron–photon correlation are given. Inclusion of these potentials to the Hamiltonian of the uncoupled electronic system leads to a purely electronic Schrödinger equation that uniquely determines the electronic states of the complete electron–photon system. For a one-dimensional asymmetric double-well potential coupled to a single photon mode with resonance frequency, we investigate the features of the exact scalar potential. In particular, we discuss the significance of the step-and-peak structure of the exact scalar potential in describing the phenomena of photon-assisted delocalization and polaritonic squeezing of the electronic excited-states. In addition, we develop an analytical approximation for the scalar potential and demonstrate how the step-and-peak features of the exact scalar potential are captured by the proposed analytical expression.  相似文献   

18.
19.
在矢势与标势相等的情况下,对Hartmann势加新环型势的Klein-Gordon方程精确求解.给出了归一化的角向和径向波函数,同时获得了能谱方程.  相似文献   

20.
陈昌远  孙东升  陆法林 《物理学报》2006,55(8):3875-3879
在标量势等于矢量势的条件下,获得了库仑势加新环形势的Klein-Gordon方程和Dirac方程的束缚态的精确解. 对于Klein-Gordon方程,获得了精确的能谱方程和归一化的波函数. 对于Dirac方程,给出了精确的能谱方程和归一化的旋量波函数. 关键词: 库仑势加新环形势 束缚态 精确解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号